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Abstract
This manuscript presents a new higher-order beam model. The present beam model is governed by differential equations that
are similar to those present in some existing higher-order beam models; however, the present beam model makes use of a
novel method of calculating the transverse shear stiffness, which facilitates the calculation of a shear-warping stiffness without
the need for an assumed warping displacement field, and without introducing any additional kinematic variables. The present
beam model also facilitates the recovery of the distributions of longitudinal normal stresses and transverse shear stresses.
The authors postulate that the bending and shear terms in first-order shear deformation theory represent the first two terms
in an infinite series that would constitute an ideal one-dimensional beam model, and it is suggested that the present beam
model constitutes the first four terms in this hypothetical infinite series. The present beam model is solved for several example
beams, and the results are compared to those of existing classical and higher-order beam models, as well as computational
results from finite element analyses. It is shown that the present beam model is able to accurately represent deformed shapes
and stress distributions pertaining to beams that exhibit non-trivial shear compliance as well as non-trivial shear-warping
stiffness. In the case of laminated composite beams comprising a large number of laminae, the present beam model offers a
level of analytical fidelity that is comparable to that of existing zigzag beam models; however, unlike zigzag beam models, the
present beam model is equally well suited for the analyses of beams comprising any number of laminae.
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1 Introduction

Despite the continual advancement of the finite element method and other computational modeling techniques,
classical one-dimensional beam models continue to enjoy extensive use within the academic and industrial sectors.
Perhaps the most commonly known classical one-dimensional beam models are Euler-Bernoulli beam theory and
Timoshenko beam theory1 2.

Euler-Bernoulli beam theory assumes a relationship between an applied transverse load and the resulting deflection.
In Euler-Bernoulli beam theory, the applied transverse shear force produces a bending moment, which produces a
curvature dependent on the flexural (bending) stiffness of the beam. This curvature is then successively integrated
to obtain transverse deflections. Timoshenko beam theory1 2 improves upon this relationship by accounting for
additional transverse compliance caused by shear deformations. In essence, Timoshenko beam theory is an early
example of first-order shear deformation theory. First-order shear deformation theories (such as Timoshenko beam
theory) typically manifest themselves as the super-position of bending deflections and shear deflections, and are
dependent upon knowledge of material properties, geometric properties, and derived section constants that represent
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the mechanical characteristics of the beam. The required properties and section constants for first-order shear
deformation theories typically include longitudinal elastic moduli, shear moduli, second area moments of inertia,
cross-sectional areas, and shear correction factors.

Timoshenko beam theory (and other first-order shear deformation theories) has earned a great deal of attention
among academic researchers. Some researchers have focused on characterizing the capabilities and limitations of
Timoshenko beam theory, and have highlighted some paradoxes that are present within the boundary conditions that
must be imposed3 4. A particularly large amount of effort as been focused on determining an ideal shear correction
factor for use with Timoshenko beam theory5. Researchers have proposed elasticity-based formulations6 and energy-
based formulations7 for the calculation of a shear correction factor. In recent years, numerous researchers have
developed high fidelity computational and semi-analytical methods that employ analyses of the sectional warping
displacement field in order to calculate each of the section constants that are required for use with Timoshenko
beam theory (including the shear correction factor); these computational and semi-analytical methods have included
the variational asymptotic beam sectional analysis (VABS) method8 9 10, the semi-analytical finite element (SAFE)
method11 12 13 14, and a plethora of other similar and related works15 16 17 18 19.

It is generally understood that many of the limitations of first-order shear deformation theories (such as Timoshenko
beam theory) stem from their inability to account for the effects of non-uniform warping of the beam section20 4.
Some researchers have attempted to overcome the inherent limitations of first-order shear deformation theories
by opting to develop higher-order shear deformation theories, such as third-order shear deformation theories, that
endeavor to account for non-uniform warping of the cross-sections of beams and plates21 22 20 23. Unfortunately,
the cubic warping displacement field that is assumed by third-order shear deformation theories causes erroneous
results for beams that exhibit heterogeneous compositions; this problem is particularly evident in the context of
laminated composite beams and plates24. As such, some researchers have developed layer-wise theories of beams
and plates, wherein the kinematics of each layer (lamina) within a laminate are independently defined, and the
layer-to-layer continuity of some physical parameters is enforced25 26. In order to overcome the relatively high
computational expense of layer-wise theories, some researchers have developed so-called “zigzag” models, wherein
the sectional warping displacement fields of laminated composite beams and plates are approximated by piecewise
linear functions27 25 28. In general, the mathematical bases of these zigzag models are not inherently well suited
to the analyses of homogeneous beams or laminated beams comprising a small number of thick homogeneous
laminae; however, the so-called “Homogeneous Limit Methodology for Zigzag Function Selection” (HLMZFS) has
been developed as a means to extend the applicability of zigzag models to the analyses of such beams24. The HLMZFS
is based upon the notion that any homogeneous layer of rectangular cross-section can be partitioned into many
laminae, and then small perturbations can be applied to the mechanical properties of the material that is present
within each of said laminae, thereby simulating the existence of a pseudo-heterogeneous laminate and, in turn,
facilitating the application of a zigzag model. The perturbations applied to the shear modulus of each of the laminae
follow a parabolic distribution through the depth of the beam, thus achieving a parabolic shear stress distribution,
as is expected in a homogeneous beam. Unfortunately, the HLMZFS is dependent upon ad-hoc decisions pertaining
to the number of laminae that should be used and the magnitude of the perturbations that should be applied to
the mechanical properties of the materials that are present within said laminae. Additionally, in a beam comprising
multiple dissimilar materials, the perturbations applied in the HLMZFS model are negligible in comparison with the
actual differences in mechanical properties of the beam, thus the model effectively reverts to a standard zigzag model,
and piecewise constant shear stresses are predicted.

Linear sandwich theory29 30 is a method of modelling the elastic response of laminated composite sandwich panels,
while accounting for the effects of non-uniform warping of the cross-section. In essence, linear sandwich theory can
be likened to a special case simplification of zigzag models, wherein a simple sectional warping displacement field
can be assumed on the basis of the unique characteristics of laminated composite sandwich panels.

The so-called “Carrera Unified Formulation” (CUF)31 32 33 34 35 is a computational method, wherein the order of the
model may be stipulated as a solution control parameter. CUF models are not bound by any specific pre-determined
displacement functions; as such, CUF beam analyses may be configured to mimic (or improve upon) the behaviour of
Euler-Bernoulli beam theory, Timoshenko beam theory, third-order shear deformation theory, or higher-order shear
deformation theories. Ultimately, CUF can be likened to a computationally-efficient substitute for three-dimensional
finite element analysis. Unfortunately, practical implementation of CUF requires a considerably greater commitment
than some of the other analytical methods that have been discussed herein. While CUF has many desirable attributes,
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it is unlikely that an industry engineer would adopt the use of CUF for a single-use (one-off) application if said
engineer was not already accustomed to using CUF.

Engineers often have a need to rapidly correlate experimental test results (such as material qualification test results)
with analytical predictions. For example, aerospace engineers frequently engage in rigorous material characterization
test programs that often include a plethora of small-scale experimental transverse loading tests (such as 3-point
bending tests or 4-point bending tests); by correlating these experimental test results with analytical predictions,
engineers are often able to semi-empirically derive engineering constants that are needed for subsequent engineering
efforts, as well as achieve a more comprehensive understanding of the experimental observations. Some composite
laminates that are used in aerospace applications (particularly those that include one or more constrained layers
of an elastomeric material) exhibit non-trivial transverse shear compliance coupled with non-trivial shear-warping
stiffness. The transverse displacement of these laminates cannot be accurately predicted by simple Euler-Bernoulli
or Timoshenko beam models; however, high-fidelity three-dimensional finite element analyses are often regarded as
being too cumbersome and time consuming to be considered for this type of application. As such, there continues to
exist a need for high-fidelity analytical beam models that can quickly and easily be implemented by industry engineers
who are accustomed to writing simple bespoke computer software scripts or spreadsheets.

In the present manuscript, a new one-dimensional beam model is presented. This new beam model is governed by
differential equations that are similar to those present in some existing higher-order beam models; however, the new
beam model is unique in the means by which the required section constants are calculated. The present beam model
makes use of a novel method of calculating the transverse shear stiffness; this transverse shear stiffness facilitates
the calculation of a shear-warping stiffness that is formulated based upon fundamental elasticity relationships,
without the need for an assumed warping displacement field. Furthermore, the shear-warping stiffness is calculated
without introducing any additional kinematic variables to the governing equations of the beam model: the differential
equations governing the model are second-order in both transverse displacement and rotation, with no additional
kinematic variables. The resulting shear-warping stiffness remains accurate for heterogeneous material compositions,
and is therefore applicable to laminated composite beams. The present beam model also facilitates the recovery of
the distributions of longitudinal normal stresses and transverse shear stresses at all positions within the beam. The
present beam model may be implemented using a simple bespoke computer software script or spreadsheet.

2 Background

The present discussion uses an orthogonal Cartesian coordinate system defined by the three axes: x , y , and z, where
the longitudinal axis of the undeformed beam is initially parallel to the x-axis. In general, the terms “section” and
“cross-section” are used herein in reference to y-z cross-sectional planes that are established prior to deformation of a
beam; after the beam has deformed, said sections may become non-planar (due to warping displacements) and may
translate and rotate relative to their initial states. Each beam section has a local y-y axis that is parallel to the global
y-axis. While all of the beam theories discussed herein are applicable to any direction of transverse loading, in the
interest of clarity, the authors have elected to discuss beams in the context of transverse shear forces that act parallel
to the z-axis, coupled with moments that act about the y-y axis of the beam section (y-y moments). As such, it is
assumed that all applied loads act parallel to the z-axis. In general, the term “elevation” is used herein in reference
to positions and dimensions that are measured parallel to the z-axis. The term “longitudinal elastic modulus” herein
denotes the Young’s modulus of elasticity measured parallel to the x-axis.

In the case of a linear elastic beam, Timoshenko beam theory1 2 can be represented by a system of two coupled
differential equations, which express the bending moment and the transverse shear force in terms of the transverse
deflection and the rotation of the cross-sectional plane at any x position along the length of the beam. The first of
these differential equations expresses the y-y moment at any x position along the length of the beam, as follows:

My y T imoshenko =−EI y y
dφy y

d x
(1)

where My y T imoshenko is the moment about the y-y axis of the beam section; EI y y is the flexural (bending) stiffness
of the beam section about its y-y axis, based upon the assumption that bending strains vary linearly along the z-
axis (Euler-Bernoulli assumptions); and φy y is the angle of rotation of the section at position x about its y-y axis,
measured relative to the initial undeformed shape of the beam. The second of the aforementioned two differential
equations expresses the transverse shear force at any x position along the length of the beam, as follows:
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Vz T imoshenko =κz AGxz

�

dw
d x
−φy y

�

(2)

where Vz T imoshenko is a transverse shear force applied parallel to the z-axis; w is the transverse deflection of the beam
in the z direction, measured relative to the initial undeformed shape of the beam; AGxz is the area integral of local x-z
shear moduli over the entire y-z cross-sectional area of the beam; and κz is the shear correction factor for use with
transverse shear forces that are applied parallel to the z-axis. In the case of Timoshenko beam theory, it is assumed
that the product of κz and AGxz represents the transverse shear stiffness of the beam section, for use with transverse
shear forces that are applied parallel to the z-axis.

It is evident from equations (1) and (2) that the governing equations of Timoshenko beam theory include two
kinematic variables: w and φy y . Since φy y represents the true angle of rotation of the section at position x , whereas
dw
d x represents the slope of the longitudinal axis of the deformed beam at position x , any difference between these
values represents a shear angle (herein referred to as a “nominal shear angle”) that is measured within the x-z plane
of the beam.

Figure 1 shows the deformed shape of a transversely loaded beam, and helps to illustrate some of the geometric
dimensions that are relevant to Timoshenko beam theory, as well as the present beam model.

x

z

w

φy y

dw
d x

θS =
dw
d x −φy y

1
Figure 1. Deformed shape of a transversely loaded beam, illustrating some of the geometric dimensions that are relevant to Timoshenko
beam theory, as well as the present beam model

3 Governing Equations of the Present Beam Model

The present beam model constitutes an extension of Timoshenko beam theory that endeavors to account for resistance
to variations in transverse shear deformations along the length of the beam. In order to facilitate this provision, it is
convenient to define a nominal shear angle, θS , as follows:

θS =
dw
d x
−φy y (3)

With this definition for θS , the total curvature of the beam can be expressed (for cases where w is small in relation
to the size of the beam), as follows:

Curvature=
d2w

d x2

�

1+
�

dw
d x

�2�−3/2

≈ d2w

d x2 =
dφy y

d x
+

dθS

d x
(4)

It is important to note that, in the context of the cross-sectional plane of the beam, positive rotations of φy y and
θS occur in opposite directions. Conversely, in the context of the apparent slope of the deflected beam within the x-z
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plane, positive rotations of φy y and θS occur in the same direction. This apparent discrepancy is an artifact of the
definition of engineering shear strain angles.

In order to maximize ease of exposition of the present beam model, the differential equation for moments about
the y-y axis will be decomposed into two components: My y B and My y W1. These two components of the moment
will later be added by superposition. Similarly, the differential equation for transverse shear forces that act parallel
to the z-axis will be decomposed into two components: Vz B and Vz W1. These two components of the transverse shear
force will later be added by superposition.

The first component of the moment, My y B, is identical to that which exists in both Euler-Bernoulli and Timoshenko
beam theories, and is expressed as follows:

My y B =−EI y y
dφy y

d x
(5)

A detailed derivation of equation (5) is included in Section 4.2.
Differentiating My y B with respect to x gives an expression for the component of the transverse shear force due to

bending, denoted by Vz B, as follows:

Vz B =−
dEI y y

d x

dφy y

d x
− EI y y

d2φy y

d x2 (6)

In the context of a beam that exhibits constant cross-sectional geometry and composition along its length, equation
(6) can be simplified, as follows:

Vz BC
=−EI y y

d2φy y

d x2 (7)

It will be shown in Section 4.3 that Vz BC
can be expressed in terms of θS , as follows:

Vz BC
=−EI y y

d2φy y

d x2 =Λxz θS (8)

where Λxz is the transverse shear stiffness of the beam section, for use with transverse shear forces that are applied
parallel to the z-axis. In the context of the present beam model, the value of Λxz is calculated in accordance with the
method that is described in Section 4.3.

Up to this point, it should be evident to the reader that the present beam model is equivalent to Timoshenko beam
theory (with the exception of the method by which the transverse shear stiffness is calculated), since equation (5) is
equivalent to equation (1), and equation (8) is equivalent to equation (2).

As will be shown in Sections 4.3 and 4.4, the very existence of equation (8) indicates that plane sections do not
remain planar in any case where transverse shear forces are non-zero, thus invalidating one of the assumptions that
was employed in the formulation of equation (5). In order to compensate for this erroneous assumption, it is possible
to add a term to the moment equation that serves to account for additional moments (shear-warping moments) that
are generated due to the rate of change of shear-warping displacements with respect to x , where shear-warping
displacements are longitudinal warping displacements that are caused by transverse shear strains. As will be shown
in Sections 4.3 and 4.4, this shear-warping moment term, My y W1, can be expressed as follows:

My y W1 =−β1z
dθS

d x
(9)

where β1z is a stiffness term that relates the rate of change of θS with respect to x to the generation of some additional
moment (shear-warping moment). In essence, β1z is a stiffness term that describes the resistance of the beam to
longitudinal non-uniformity of the shear-warping displacements of its section. As such, it is fitting to refer to β1z as a
shear-warping stiffness. The subscripts in the notation for β1z are representative of the fact that this term relates to
moments that are generated as a function of the first derivative of nominal shear angles with respect to x , wherein
said nominal shear angles are caused by transverse shear forces that act parallel to the z-axis.

Summing equations (5) and (9), the overall moment about the y-y axis of the beam section can now be expressed,
as follows:
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My y =My y B+My y W1 =−EI y y
dφy y

d x
− β1z

dθS

d x
(10)

where My y is the total moment about the y-y axis of the beam section. Differentiating My y with respect to x gives
the following more complete expression for the transverse shear force:

Vz =−
dEI y y

d x

dφy y

d x
− EI y y

d2φy y

d x2 −
dβ1z

d x
dθS

d x
− β1z

d2θS

d x2 (11)

where Vz is the total transverse shear force applied parallel to the z-axis. With reference to equation (11), it is
convenient to decompose Vz into two components, as follows:

Vz = Vz B+Vz W1 (12)

where:

Vz W1 =−
dβ1z

d x
dθS

d x
− β1z

d2θS

d x2 (13)

From inspection of equations (12), (6), and (13), it is evident that Vz B represents the component of the transverse
shear force that is caused by variations in φy y along the length of the beam, whereas Vz W1 represents the component
of the transverse shear force that is caused by variations in θS along the length of the beam.

In the context of a beam that exhibits constant cross-sectional geometry and composition along its length, equation
(12) can be simplified, as follows:

VzC
= Vz BC

+Vz W1C
(14)

where:

Vz W1C
=−β1z

d2θS

d x2 (15)

VzC
is equivalent to Vz when the cross-sectional geometry and composition are held constant. Similarly, Vz BC

is
equivalent to Vz B when the cross-sectional geometry and composition are held constant, and Vz W1C

is equivalent
to Vz W1 when the cross-sectional geometry and composition are held constant.

Substituting equations (8) and (15) into equation (14) gives the following expression for VzC
:

VzC
=Λxz θS − β1z

d2θS

d x2 (16)

Ultimately, the present beam model is embodied by equations (10) and (16) (where equation (16) represents the
amalgamation of equations (14), (8), and (15)). In long regions of a beam within which transverse shear forces
are approximately constant, the nominal shear angle will also be approximately constant (in accordance with Saint-
Venant’s principle36), and equations (10) and (16) will effectively simplify to equations (1) and (2), respectively.

The governing equations of the present beam model (equations (10) and (16)) include two kinematic variables:
φy y and θS . With reference to equation (3), it is evident that the kinematic variables in the present beam model
are equivalent to those present in Timoshenko beam theory. It is interesting to note that the governing equations of
the present beam model (equations (10) and (16)) are quite similar to the governing equations of linear sandwich
theory29 30; however, it will be shown herein that the present beam model is not limited to the analysis of sandwich
panels.

From inspection of equations (10) and (16), it is evident that VzC
is only dependent upon θS , whereas My y is

dependent upon both φy y and θS . As such, in the context of a statically determinate structure, where My y and VzC
are both known over the entire length of the beam, it is convenient to solve equation (16) first (either analytically or
computationally). Once equation (16) has been solved, the resulting θS distribution can be substituted into equation
(10) in order to solve for φy y . Once φy y and θS have both been determined, the overall curvature profile of the beam
can be calculated using equation (4), and the deflected shape of the beam can then be determined by carrying out
successive integrations of the calculated curvature profile.
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4 Section Constants for the Present Beam Model

4.1 General
In the interest of clarity and ease of exposition, the section constants for the present beam model are derived herein
in the context of the following simplifying assumptions:

1. It is assumed that the beam constitutes a laminated composite beam wherein each ply comprises a linear elastic
orthotropic material having three orthogonal symmetry planes, and wherein the surface normal of each of said
symmetry planes is aligned with one of the x-y-z coordinate axes of the beam.

2. It is assumed that the beam exhibits a constant rectangular cross-sectional geometry and composition along its
length, thus significantly simplifying the derivation of the section constants by facilitating the use of equations
(14), (8), (15), and (16).

3. It is assumed that all stresses act parallel to the x-z plane; as such, the effects of Poisson’s ratio are neglected.
4. It is assumed that all normal strains and normal stresses act parallel to the longitudinal axis of the beam; as

such, the effects of Poisson’s ratio are neglected.

Notwithstanding the foregoing, readers who are skilled in the art will appreciate that the spirit and philosophy
embodied by the following derivations for section constants can be applied to higher fidelity formulations that
account for general anisotropy, as well as the effects of full three-dimensional mechanical phenomena. In fact, the
authors believe that the general philosophy of the derivations presented herein could be executed (with increased
fidelity) by one or more of the many computational or semi-analytical methods that have been shown in the
literature8 9 10 11 12 13 14 15 16 17 18 19 to be effective for the calculation of the section constants of beams.

4.2 Flexural Stiffness
For the purpose of calculating the flexural stiffness, EI y y , of the beam, it is assumed that plane sections remain
planar after deformation, and longitudinal bending displacements vary linearly along the z-axis (Euler-Bernoulli
beam assumptions), as follows:

uB =− (Z−ZNA)φy y (17)

where Z is the elevation coordinate of some specific point of interest within the beam section, measured with respect
to the bottom surface of the beam; ZNA is the elevation of the y-y flexural neutral axis of the beam section, measured
with respect to the bottom surface of the beam; and uB is the longitudinal bending displacement (measured parallel
to the x-axis), evaluated at elevation Z .

Differentiating uB with respect to x , the longitudinal (x) bending strain, εx B, can be expressed at elevation Z , as
follows:

εx B =
duB

d x
=− (Z−ZNA)

dφy y

d x
(18)

The longitudinal (x) bending stress, σx B, can now be expressed at elevation Z , as follows:

σx B =−Ex x (Z−ZNA)
dφy y

d x
(19)

where Ex x is the longitudinal elastic modulus of the material present at elevation Z .
Integrating bending stresses over the cross-sectional area of the beam, the total longitudinal force, FB, that is

generated as a result of bending stresses can be expressed as follows:

FB =

ZT
∫

Z=ZB

Bσx B dZ (20)

where ZB and ZT are the elevations of the bottom and top surfaces of the entire beam section, respectively, each
measured with respect to the bottom surface of the beam; and B is the total width of the beam section, measured
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parallel to the y-axis. Substituting equation (19) into equation (20) and setting FB equal to zero for pure bending,
the following expression can be written:

0=
dφy y

d x

ZT
∫

Z=ZB

B Ex x (Z−ZNA)dZ (21)

The value of ZNA can then be determined by solving the integral in equation (21) and rearranging the resulting
expression to isolate for ZNA, as follows:

ZNA=

ZT
∫

Z=ZB

Z B Ex x dZ

ZT
∫

Z=ZB

B Ex x dZ

(22)

At this point, it is convenient to introduce a new elevation variable, ζ, as follows:

ζ= Z−ZNA (23)

From inspection of equation (23), it is evident that ζ represents an elevation coordinate measured with respect to
the y-y flexural neutral axis of the beam section.

The bending moment within the beam due to bending curvatures alone (ignoring the effects of transverse shear)
can be expressed as follows:

My y B =−
dφy y

d x

ζT
∫

ζ=ζB

B Ex x ζ
2 dζ (24)

where ζB is the elevation of the bottom surface of the entire beam section, measured with respect to the y-y flexural
neutral axis of the beam section; ζT is the elevation of the top surface of the entire beam section, measured with
respect to the y-y flexural neutral axis of the beam section; and Ex x is the longitudinal elastic modulus of the material
present at elevation ζ.

Substituting equation (5) into equation (24) and rearranging the resulting formula, the flexural stiffness of the
beam section can be calculated as follows:

EI y y =

ζT
∫

ζ=ζB

B Ex x ζ
2 dζ (25)

4.3 Transverse Shear Stiffness

Unfortunately, many of the existing methods for calculating the transverse shear stiffness of a beam section would
result in shear-warping displacement fields that fail to satisfy a work-energy balance between shear-warping moments
and the corresponding longitudinal warping strains. In the context of first-order shear deformation theories, this may
not be problematic because warping deformations are ignored by such beam theories. Conversely, in the context
of higher-order beam theories that endeavor to account for the effects of shear-warping, the aforementioned work-
energy balance must be achieved.

The present beam model employs a novel formulation for the calculation of the transverse shear stiffness of
the beam section, Λxz , which ensures that work that is done by local shear-warping moments is balanced by the
corresponding local strain energy that is associated with the longitudinal warping strain field.

The x-z shear strain at each elevation within a beam’s cross-section can be expressed as a function of the rate of
change of bending curvature along the length of the beam, as follows:
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γxz B =
1

B Gxz







ζh
∫

ζ=ζB

B Ex x ζdζ







d2φy y

d x2 (26)

where ζh is some specific elevation of interest within the beam section, measured with respect to the y-y flexural
neutral axis of the beam section; γxz B is the x-z shear strain that is caused solely by the rate of change of bending
curvatures, evaluated at elevation ζh; Ex x is the longitudinal elastic modulus of the material present at elevation ζ;
and Gxz is the x-z shear modulus of the material present at elevation ζh.

Substituting equation (8) into equation (26), the following expression is found:

γxz B =
Λxz θS

EI y y B Gxz






−

ζh
∫

ζ=ζB

B Ex x ζdζ






(27)

It is convenient to define a new term, QV , as the integral of the first moment of longitudinal elastic moduli about
the y-y flexural neutral axis of the beam section, for all material below elevation ζh, as follows:

QV = −
ζh
∫

ζ=ζB

B Ex x ζdζ (28)

where Ex x is the longitudinal elastic modulus of the material present at elevation ζ. Substituting QV into equation
(27), the formula for γxz B can be rewritten as follows:

γxz B =
Λxz QV

EI y y B Gxz
θS (29)

where Gxz is the x-z shear modulus of the material present at elevation ζh.
It is useful to define γxz BRel as the difference between γxz B (the actual x-z transverse shear strain angle) and θS

(the nominal shear angle) at elevation ζh, as follows:

γxz BRel =
Λxz QV

EI y y B Gxz
θS − θS (30)

The shear-warping displacement, uW1, can be defined as the longitudinal displacement (measured parallel to the
x-axis) that is caused solely by x-z transverse shear strains. At some specific elevation within the beam section, ζH ,
the shear-warping displacement can be expressed as follows:

uW1 =

ζH
∫

ζh=ζB

γxz BRel dζh + uW1B (31)

where ζH is some specific elevation of interest within the beam section, measured with respect to the y-y flexural
neutral axis of the beam section; and uW1B represents the longitudinal shear-warping displacement (measured
parallel to the x-axis) at the bottom surface of the beam (where ζh = ζB). Since all values of uW1 (including the
value of uW1 evaluated at ζh=ζB) are dependent upon the nominal shear angle, θS , it is convenient to express uW1B
as the product of θS and some constant, CuW1, as follows:

uW1B = CuW1θS (32)

It is now possible to express the longitudinal (x) normal strain, εx W1, that is caused solely by a rate of change of
θS along the length of the beam, at elevation ζH , as follows:

εx W1 =
duW1

d x
(33)
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In the interest of solving equation (33), it is convenient to define a new term, RW1, as follows:

RW1 =

ζH
∫

ζh=ζB

QV

B Gxz
dζh (34)

where Gxz is the x-z shear modulus of the material present at elevation ζh.
Having defined RW1, equation (33) can now be rewritten, as follows:

εx W1 =
dθS

d x

�

Λxz

EI y y
RW1 − [ζH +ZNA] + CuW1

�

(35)

where [ζH +ZNA] represents the distance between elevation ζH and the bottom surface of the beam.
The term Fx W1 denotes the total longitudinal force that is generated within the beam as a result of εx W1; the value

of Fx W1 can be expressed as follows:

Fx W1 =

ζT
∫

ζH=ζB

εx W1 B Ex x dζH (36)

where Ex x is the longitudinal elastic modulus of the material present at elevation ζH . For a beam that is only
undergoing transverse loading, the value of Fx W1 must be equal to zero. As such, substituting equation (35) into
equation (36), and setting Fx W1 = 0, the following expression is found:

0=
dθS

d x

ζT
∫

ζH=ζB

�

Λxz

EI y y
RW1 − [ζH +ZNA] + CuW1

�

B Ex x dζH (37)

The value of CuW1 can be expressed in terms of Λxz and EI y y by solving the integral in equation (37) and rearranging
the resulting expression to isolate for CuW1, as follows:

CuW1 = CW1C +
Λxz

EI y y
CW11 (38)

where:

CW1C =

ζT
∫

ζH=ζB

(ζH +ZNA) B Ex x dζH

ζT
∫

ζH=ζB

B Ex x dζH

CW11 =

−
ζT
∫

ζH=ζB

RW1 B Ex x dζH

ζT
∫

ζH=ζB

B Ex x dζH

Once the values of CW1C and CW11 have been determined, it is possible to express the total internal longitudinal
(x) normal strain energy that is generated as a result of the rate of change of shear deformation along the length of
the beam, per unit length of beam, d x , as follows:

dUint W1ε

d x
=

1
2

ζT
∫

ζH=ζB

εx W1
2 B Ex x dζH (39)
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Substituting equations (35) and (38) into equation (39) gives the following expression:

dUint W1ε

d x
=

1
2

�

dθS

d x

�2

β1U int (40)

where:

β1U int =

ζT
∫

ζH=ζB

�

Λxz

EI y y
[RW1 +CW11]− ζH − ZNA + CW1C

�2

B Ex x dζH (41)

where Ex x is the longitudinal elastic modulus of the material present at elevation ζH .
The moment due to warping strains can be determined by integrating the moments of the corresponding stresses

about the y-y flexural neutral axis of the beam section, as follows:

My y W1 =

ζT
∫

ζH=ζB

εx W1ζH B Ex x dζH (42)

where My y W1 is the additional moment (shear-warping moment) that is necessary in order to facilitate variations in
the nominal shear angle, θS , along the length of the beam. If My y W1 were equal to zero, then the value of θS would
be constant. My y W1 is present in equation (9). Substituting equations (35) and (38) into equation (42) gives the
following expression:

My y W1 = −β1U ex t
dθS

d x
(43)

where:

β1U ex t = −
ζT
∫

ζH=ζB

�

Λxz

EI y y
[RW1 +CW11]− ζH − ZNA + CW1C

�

ζH B Ex x dζH (44)

where Ex x is the longitudinal elastic modulus of the material present at elevation ζH . The external work that
corresponds to My y W1 can be expressed, per unit length of beam, d x , as follows:

dUex t W1ε

d x
= − 1

2
My y W1

dθS

d x
(45)

Substituting equation (43) into equation (45) gives the following expression:

dUex t W1ε

d x
=

1
2

�

dθS

d x

�2

β1U ex t (46)

Recognizing that external work due to shear-warping moments must be equal to internal strain energy due to
the corresponding sectional warping, it follows that equation (46) must be equal to equation (40). Upon setting
equation (46) equal to equation (40), it is evident that the values of β1U int and β1U ex t must be equal to each other.
As such, the value of Λxz can be solved by setting the expression for β1U int (equation (41)) equal to the expression
for β1U ex t (equation (44)), and rearranging the resulting equation in order to isolate Λxz . In order to achieve this, it
is convenient to first express β1U int and β1U ex t in terms of Λxz , as follows:

β1U int = PβC + Pβ1Λxz + Pβ2Λxz
2 (47)

β1U ex t = NβC + Nβ1Λxz (48)

where PβC , Pβ1, Pβ2, NβC , and Nβ1 are section constants that may be calculated as follows:
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PβC =

ζT
∫

ζH=ζB

(CW1C − ζH − ZNA)
2 B Ex x dζH (49)

Pβ1 =
1

EI y y

ζT
∫

ζH=ζB

2 (RW1 +CW11) (CW1C − ζH − ZNA) B Ex x dζH (50)

Pβ2 =
1

�

EI y y
�2

ζT
∫

ζH=ζB

(RW1 +CW11)
2 B Ex x dζH (51)

NβC = −
ζT
∫

ζH=ζB

(CW1C − ζH − ZNA) ζH B Ex x dζH (52)

Nβ1 =
−1

EI y y

ζT
∫

ζH=ζB

(RW1 +CW11) ζH B Ex x dζH (53)

where Ex x is the longitudinal elastic modulus of the material present at elevation ζH .
Setting β1U int equal to β1U ex t and finding the roots of the resulting quadratic formula, the value of Λxz can be

calculated as follows:

Λxz =

�

4 Pβ2

�

NβC − PβC
�

+
�

Nβ1− Pβ1

�2�1/2
+ Nβ1 − Pβ1

2 Pβ2
(54)

It is worth emphasizing, as mentioned previously, that many existing methods for calculating the transverse shear
stiffness of a beam section would result in shear-warping displacement fields that fail to satisfy a work-energy balance
between shear-warping moments and the corresponding longitudinal warping strains. For example, one may be
inclined to attempt to find a value of Λxz by employing the “directional shear energy” method that is used to find
shear correction factors in5 (a modified version of the method presented in7): this would give values of Λxz that,
when substituted into equations (43) and (44), yield shear-warping moments of approximately zero. Paradoxically,
these same values of Λxz yield non-zero values of warping strain energy when they are substituted into equations
(40) and (41). This inconsistency prompted the present authors to develop the present formulation for Λxz .

4.4 Resistance to Variations in Shear Angle
Recall from equation (9) that the shear-warping moment, My y W1, is expressed as follows:

My y W1 = −β1z
dθS

d x
(55)

Recognizing that equation (55) is equivalent to equation (43), it is now evident that the value of β1z is equal to
the value of β1U ex t . As such, the value of β1z may be calculated as follows:

β1z = β1U ex t = NβC +Nβ1Λxz (56)

Recalling that β1U ex t is equal to β1U int , it is also possible to calculate the value of β1z as follows:

β1z = β1U int = PβC + Pβ1Λxz+ Pβ2Λxz
2 (57)

From inspection of the preceding derivation, it is evident that β1z essentially represents the resistance of the beam’s
section to a rate of change of θS with respect to x , wherein each local value of θS corresponds to a local shear-warping
displacement field. As such, it is fitting to refer to β1z as a shear-warping stiffness.
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Differentiating My y W1 with respect to x , it is possible to find a transverse shear force, Vz W1, that corresponds to
My y W1, as follows:

Vz W1 =
dMy y W1

d x
(58)

Substituting equation (55) into equation (58), the following expression for Vz W1 is found:

Vz W1 = −
dβ1z

d x
dθS

d x
− β1z

d2θS

d x2 (59)

In the context of a beam that exhibits constant cross-sectional geometry and composition along its length, equation
(59) can be simplified as follows:

Vz W1C
= −β1z

d2θS

d x2 (60)

Vz W1C
represents the additional transverse shear force that is necessary in order to facilitate variations in the nominal

shear angle, θS , along the length of the beam. If Vz W1C
were equal to zero, then the value of θS would be constant.

Vz W1C
is present in equations (14) and (15).

It is evident that equations (55) and (60) are identical to equations (9) and (15), respectively, thus concluding the
derivation of the present beam model.

4.5 Section Constants for a Laminated Composite Beam
In the context of a laminated composite beam, equation (22) for ZNA can be solved as follows:

ZNA=

n
∑

k=1

�

Ex x k
�

Ztk
2−Zbk

2
��

2
n
∑

k=1
[Ex x k (Ztk−Zbk)]

(61)

where Zbk is the value of Z at the bottom of lamina k, Ztk is the value of Z at the top of lamina k, Ex x k is the
longitudinal elastic modulus of the material that is present within lamina k, and n is the total number laminae (plies)
in the laminate.

In the context of a laminated composite beam, equation (25) for EI y y can be solved as follows:

EI y y =
B
3

n
∑

k=1

�

Ex x k
�

ζtk
3−ζbk

3
��

(62)

where ζbk is the value of ζ at the bottom of lamina k, and ζtk is the value of ζ at the top of lamina k.
In the context of a laminated beam, equation (28) for QV can be solved at any elevation within each lamina k as

follows:

QV k = −
ζh
∫

ζ=ζbk

B Ex x kζdζ−
k−1
∑

i=1

ζt i
∫

ζ=ζbi

B Ex x i ζdζ (63)

where QV k is the value of QV , evaluated at some elevation, ζh, that resides within lamina k; ζbi and ζt i are the values
of ζ at the bottom and top of lamina i, respectively; and Ex x i is the longitudinal elastic modulus of the material that
is present within lamina i. The definite integrals for QV k can be solved within their integration bounds as follows:

QV k =
−B Ex x k

2

�

ζh
2−ζbk

2
�−

k−1
∑

i=1

�

B Ex x i

2

�

ζt i
2−ζbi

2
�

�

(64)

It should be noted that the value of QV k can be evaluated at any elevation within the thickness of lamina k; however,
the equations describing QV k are unique within each lamina. As such, QV k is calculated as a piecewise summation
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of the definite integrals though the thicknesses of each lamina below the elevation of interest, and up to the exact
elevation of interest, ζh, which resides somewhere within the thickness of lamina k. For practical purposes, it is more
convenient to expand QV k into the following polynomial:

QV k = AC k+A2kζh
2 (65)

where:

AC k =
B
2

¨

Ex x kζbk
2−

k−1
∑

i=1

�

Ex x i
�

ζt i
2−ζbi

2
��

«

A2k =
−B Ex x k

2
In the context of a laminated composite beam, equation (34) for RW1 may be evaluated at any elevation within

each lamina k as follows:

RW1k =

ζH
∫

ζh=ζB

QV

B Gxz
dζh = DC k+D1kζH +D3kζH

3 (66)

where:

DC k =
1
B

¨

− AC k

Gxz k
ζbk−

A2k

3Gxz k
ζbk

3+
k−1
∑

i=1

�

AC i

Gxz i
(ζt i−ζbi)+

A2 i

3Gxz i

�

ζt i
3−ζbi

3
�

�

«

D1k =
AC k

B Gxz k

D3k =
A2k

3B Gxz k

where RW1k is the value of RW1, evaluated at some elevation, ζH , that resides within lamina k; AC i and A2 i have the
same definitions as AC k and A2k, respectively, but are evaluated within lamina i instead of lamina k; and Gxz i and
Gxz k are the x-z shear moduli of the materials that are present within laminae i and k, respectively.

In the context of a laminated composite beam, the values of CW1C and CW11 can be calculated by solving the
definite integrals in equation (38), as follows:

CW1C =

n
∑

k=1

¦

Ex x k
�

ZNA (ζtk−ζbk) +
1
2

�

ζtk
2−ζbk

2
��

©

n
∑

k=1

¦

Ex x k (ζtk−ζbk)
©

(67)

CW11 =

n
∑

k=1

¦

Ex x k
�−DC k (ζtk−ζbk)− 1

2 D1k
�

ζtk
2−ζbk

2
�− 1

4 D3k
�

ζtk
4−ζbk

4
��

©

n
∑

k=1

¦

Ex x k (ζtk−ζbk)
©

(68)

In the context of a laminated composite beam, the values of PβC , Pβ1, Pβ2, NβC , and Nβ1 may be calculated by
solving equations (49), (50), (51), (52), and (53), as follows:

PβC = B
n
∑

k=1

�

Ex x k

�

(ZNA−CW1C )
2 (ζtk−ζbk)

+(ZNA−CW1C )
�

ζtk
2−ζbk

2
�

+
1
3

�

ζtk
3−ζbk

3
�

��

(69)
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Pβ1 =
B

EI y y

n
∑

k=1

�

Ex x k

�

2 (CW1C −ZNA) (DC k+CW11) (ζtk−ζbk)

+[D1k (CW1C −ZNA)−DC k−CW11]
�

ζtk
2−ζbk

2
�

− 2
3

D1k
�

ζtk
3−ζbk

3
�

+
1
2

D3k (CW1C −ZNA)
�

ζtk
4−ζbk

4
�

− 2
5

D3k
�

ζtk
5−ζbk

5
�

��

(70)

Pβ2 =
B

�

EI y y
�2

n
∑

k=1

�

Ex x k

�

(DC k+CW11)
2 (ζtk−ζbk)

+D1k (DC k+CW11)
�

ζtk
2−ζbk

2
�

+
1
3

D1k
2
�

ζtk
3−ζbk

3
�

+
1
2

D3k (DC k+CW11)
�

ζtk
4−ζbk

4
�

+
2
5

D1k D3k
�

ζtk
5−ζbk

5
�

+
1
7

D3k
2
�

ζtk
7−ζbk

7
�

��

(71)

NβC =−B
n
∑

k=1

�

Ex x k

�

1
2
(CW1C −ZNA)

�

ζtk
2−ζbk

2
�

− 1
3

�

ζtk
3−ζbk

3
�

��

(72)

Nβ1 =
−B
EI y y

n
∑

k=1

�

Ex x k

�

1
2
(DC k+CW11)

�

ζtk
2−ζbk

2
�

+
1
3

D1k
�

ζtk
3−ζbk

3
�

+
1
5

D3k
�

ζtk
5−ζbk

5
�

��

(73)

It is interesting to note that, in cases wherein the assumptions of linear sandwich theory are applicable, the
preceding equations for the section constants of the present beam model will converge upon the section constants
that are utilized in linear sandwich theory29 30.

5 Stress Analysis with the Present Beam Model

5.1 General
The initial impetus for the development of the present beam model was to achieve accurate displacement predictions
for transversely loaded laminated composite beams having arbitrary material compositions. Notwithstanding the
foregoing, the present beam model also facilitates the recovery of stress values.
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5.2 Normal Stress

Substituting equation (23) into equation (19), the normal stress due to bending can be evaluated at elevation ζ, as
follows:

σx B = −
dφy y

d x
Ex x ζ (74)

where Ex x is the longitudinal elastic modulus of the material present at elevation ζ.
Recalling equation (35) for εx W1, the normal stress, σx W1, that is caused by a rate of change of nominal shear

angle can be evaluated at elevation ζH , as follows:

σx W1 =
dθS

d x

�

Λxz

EI y y
RW1 − ζH − ZNA + CuW1

�

Ex x (75)

where Ex x is the longitudinal elastic modulus of the material present at elevation ζH , and the value of CuW1 may be
calculated using equation (38). The preceding expression for σx W1 can be rewritten in the context of a laminated
composite beam by substituting equation (66) into equation (75).

Finally, the total longitudinal (x) normal stress, σx , can be determined at any position within the beam section by
summing σx B and σx W1, as follows:

σx =σx B+σx W1 (76)

5.3 Shear Stress

Recalling equation (29) for γxz B, the shear stress, τxz B, that is caused by a rate of change of bending curvatures can
be evaluated at elevation ζh, as follows:

τxz B =
Λxz QV

EI y y B
θS (77)

The preceding expression for τxz B can be rewritten in the context of a laminated composite beam by substituting
equation (65) into equation (77).

The shear stress, τxz W1, that is caused by shear-warping can be evaluated at elevation ζL , as follows:

τxz W1 = −
1
B

ζL
∫

ζH=ζB

�

dεx W1

d x

�

B Ex x dζH (78)

where ζL is some specific elevation of interest within the beam section, measured with respect to the y-y flexural
neutral axis of the beam section; τxz W1 is evaluated at elevation ζL; and Ex x is the longitudinal elastic modulus of
the material present at elevation ζH . Substituting equation (35) into equation (78) gives the following expression for
τxz W1:

τxz W1 = −
1
B

d2θS

d x2

ζL
∫

ζH=ζB

�

Λxz

EI y y
RW1 − ζH − ZNA + CuW1

�

B Ex x dζH (79)

where the value of CuW1 may be calculated using equation (38). In the context of a laminated composite beam,
equation (79) can be solved as a piecewise definite integral, as follows:

τxz W1 = −
d2θS

d x2

�

TC k + T1kζL + T2kζL
2 + T4kζL

4
�

(80)
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where:

TC k = TC S k − T1kζbk − T2kζbk
2 − T4kζbk

4

TC S k =
k−1
∑

i=1

�

T1 i (ζt i−ζbi) + T2 i
�

ζt i
2−ζbi

2
�

+ T4 i
�

ζt i
4−ζbi

4
��

T1k = Ex x k

�

Λxz

EI y y
DC k − ZNA + CuW1

�

T2k =
Ex x k

2

�

Λxz

EI y y
D1k − 1

�

T4k =
Ex x k

4

�

Λxz

EI y y
D3k

�

where the value of τxz W1 is evaluated at some elevation, ζL , that resides within lamina k; and T1 i , T2 i , and T4 i have
the same definitions as T1k, T2k, and T4k, respectively, but are evaluated within lamina i instead of lamina k.

Finally, the total x-z shear stress can be determined at any position within the beam section by summing τxz B and
τxz W1, as follows:

τxz =τxz B+τxz W1 (81)

6 Increased Fidelity for the Present Beam Model

6.1 Additional Shear Compliance
Upon reviewing the derivation presented in Section 4.3, it is evident that θS represents a nominal shear angle that
corresponds to the shear strains that are described by equation (29); as such, θS represents a nominal shear angle
that corresponds to Vz BC

(see equation (8)). By extension, it is reasonable to hypothesize that there may also exist
an additional nominal shear angle, θW1, that corresponds to Vz W1C

(see equation (15)). From inspection of equation
(79) for τxz W1, it is evident that the shear strains that correspond to Vz W1C

may be expressed in terms of the second
derivative of θS with respect to x; as such, θW1 can likely be defined as follows:

θW1 = CθW1
d2θS

d x2 (82)

where CθW1 is a section constant that can likely be calculated using a method that is analogous to the method that
was used to calculate Λxz in Section 4.3. Differentiating θW1 with respect to x would give a corresponding additional
shear curvature, which may be added to equation (4).

6.2 Higher-Order Terms
The shear-warping moment, My y W1, was introduced for the purpose of accounting for non-uniform sectional warping
that is caused by the shear strains that are associated with Vz BC

. In like manner, there are also shear strains that
are associated with Vz W1C

, which cause additional shear-warping displacements of the section; consequently, some
additional shear-warping moment, My y W3, is generated as a function of the rate of change of these additional shear-
warping displacements along the length of the beam. This additional shear-warping moment may be expressed as
follows:

My y W3 = β3z
d3θS

d x3 (83)

where β3z is a stiffness term that relates the third derivative of θS with respect to x to the generation of some additional
moment (shear-warping moment) about the y-y axis of the beam section. The subscripts in the notation for β3z are
representative of the fact that this term relates to moments that are generated as a function of the third derivative
of nominal shear angles with respect to x , wherein said nominal shear angles are caused by transverse shear forces
that act parallel to the z-axis. If My y W3 were to be added to equation (10) and the resulting expression were to be
differentiated with respect to x , an additional shear force component would result, as follows:
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Vz W3 =
dβ3z

d x
d3θS

d x3 + β3z
d4θS

d x4 (84)

where Vz W3 may be added to equation (12), equation (14), or equation (16). The shear strains that correspond to
Vz W3 may also cause an additional nominal shear angle, θW3, which can likely be expressed as follows:

θW3 = CθW3
d4θS

d x4 (85)

where it is assumed that β3z is constant along x , and where CθW3 is a section constant that can likely be calculated
using a method that is analogous to the method that was used to calculate Λxz in Section 4.3. Differentiating θW3
with respect to x would give a corresponding additional shear curvature, which may be added to equation (4).

At this point, the reader may appreciate that the aforementioned sequence can likely be repeated an infinite number
of times. For each new shear-warping moment term that is added to the moment equation, another shear force
component may be added to the transverse shear force equation. Similarly, for each new shear force component that
is added to the transverse shear force equation, some additional shear-warping displacement field may be derived as
a function of the corresponding shear strains, and a corresponding additional shear-warping moment term may be
added to the moment equation. In addition, for each new shear force component that is added to the transverse shear
force equation, an additional nominal shear angle may be defined, and a corresponding additional shear curvature
component may be added to the total curvature equation (as proposed in Section 6.1). With each successive iteration
through this cyclic derivation procedure, the resulting differential equations for moment and transverse shear force
(the governing equations) will increase in order, thus offering improved analytical fidelity at the expense of increased
mathematical complexity. In some respects, one can liken the aforementioned cyclic derivation procedure to a Taylor
series, wherein each additional term brings the formula closer to an exact solution, but in the absence of an infinite
number of terms, an exact solution is never achieved.

6.3 Practical Considerations
For the purpose of the present manuscript, the authors have elected to only account for the effects of the first shear-
warping stiffness, β1z , and neglect the effects of all higher-order warping effects. Furthermore, the authors have
elected to only account for the effects of transverse shear compliance that is associated with θS , and neglect the effects
of nominal shear angles that may correspond to any other terms of the shear force equation. The authors believe that
this model offers a good balance between fidelity and practicality for the case of most beams that exhibit non-trivial
shear compliance. In particular, the authors believe that this model significantly improves upon Timoshenko beam
theory by offering a solution that is devoid of discontinuities in the slope of the deflection profile, whereas Timoshenko
beams theory yields a step change in slope (and a point of infinite curvature) anywhere that the beam is subjected to
a step-change in transverse shear force.

Notwithstanding the foregoing, the authors encourage the reader to explore the hypotheses that were presented
in Sections 6.1 and 6.2.

7 Boundary Conditions for the Present Beam Model

In Timoshenko beam theory, equations (2) and (3) can be combined to form an algebraic relationship between
transverse shear force, Vz T imoshenko, and the nominal shear angle, θS . This relationship can then be combined with
equation (1) to produce a second-order differential equation relating moment, My y T imoshenko, and the transverse
deflection, w. As such, to solve these equations for a statically determinant beam, two boundary conditions are
required.

Equations (10) and (16) are the differential equations that give the deformed shape of the beam under the present
beam theory. These equations are second-order differential equations in both θS and w. Therefore, a total of four
boundary conditions are required for a statically determinant beam.

Table 1 lists some common boundary conditions that are applicable to the present beam theory. The boundary
condition for a free end warrants some discussion, however, as such a boundary condition is not always required for
other beam theories.

At the free end, the longitudinal normal stress must be zero at all elevations, since no longitudinal forces act on the
free end of the beam. Setting the longitudinal normal stresses to zero is equivalent to setting the longitudinal normal
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strains to zero. Equations (18), (23), and (35) can be combined to obtain the total longitudinal normal strain at any
elevation, ζH , as follows:

εx = εx B+εx W1 =−ζH
dφy y

d x
+

dθS

d x

�

Λxz

EI y y
RW1k − ζH − ZNA + CuW1

�

(86)

or, equivalently,

εx =−ζH

�

d2w
d x2
− dθS

d x

�

+
dθS

d x

�

Λxz

EI y y
RW1k − ζH − ZNA + CuW1

�

(87)

In order to set εx = 0 at all elevations, the two conditions d2w
d x2 = 0 and dθS

d x = 0 are necessary at the free end.
However, at a free end, by definition, the moment, My y , is zero. In the present beam theory, the total moment is

given by equation (10); therefore, setting My y = 0 and also setting dθS
d x = 0 has the effect of also setting

dφy y
d x = 0,

and with reference to equation (4), this also has the effect of setting d2w
d x2 = 0.

Table 1. Common boundary conditions for the present beam model

Physical Constraint Boundary Condition at Location of Constraint

Roller (no transverse deflection) w= 0
Guided (no rotation) dw

d x = 0 and θS = 0
Fixed (no transverse deflection, no rotation) w= 0, dw

d x = 0, and θS = 0

Free End dθS
d x = 0

8 Sample Analyses and Comparisons with Other Models

For demonstration purposes, the equations for the present beam theory have been solved for a number of example
beams. The present manuscript is focused on the section constants and the governing equations of the present beam
model. For these examples, the finite difference method was used to solve the equations; however, the authors expect
that the finite element method or analytical methods could also be used to solve these equations. In these examples,
a grid spacing of 0.03 mm, was used. The Python source code for the computer software that was used to solve the
model is provided to the reader in an online archive37.

For demonstration purposes, a single beam loading configuration is presented. This beam has a total length of 36
mm, and is symmetrically supported by a pair of pin/roller supports that are positioned 24 mm apart. A single point
load of 200 N is applied transversely (parallel to the z-axis) at the centre of the beam. Since the beam is symmetric
about a plane containing the applied load, half of the beam has been analyzed with a symmetry condition imposed,
as shown in Figure 2.

3 mm

200 N

12 mm

18 mm

1
Figure 2. Loading configuration of the beam used in the present demonstration. Since the beam is symmetric, half the beam was
analyzed with a symmetry condition imposed in the middle
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Three beams, each comprising a unique laminate, are shown as examples here. Each beam has a width of 1 mm
(measured parallel to the y-axis). Each laminate has a total thickness of 3 mm (measured parallel to the z-axis), and
comprises three laminae that each have a thickness of 1 mm. The first laminate, denoted by “Laminate A”, comprises
three identical laminae that are each composed of a typical unidirectional carbon fiber reinforced polymer having its
fibers aligned with the longitudinal axis of the beam. The second laminate, denoted by “Laminate B”, comprises a
lower lamina that is composed of a typical aluminium alloy, an upper lamina that is composed of the same material
that is present within Laminate A, and an inner (core) lamina that is composed of a typical unidirectional carbon fiber
reinforced polymer having its fibers oriented perpendicular to the longitudinal axis of the beam. The third laminate,
denoted by “Laminate C”, comprises upper and lower laminae that are composed of the same material that is present
within Laminate A; however, the inner (core) lamina of Laminate C is composed of a material that is similar to a
typical unidirectional carbon fiber reinforced polymer having its fibers oriented perpendicular to the longitudinal
axis of the beam, but with a shear modulus set an order of magnitude lower than typical materials of this type. The
three laminates are summarized in Table 2.

Table 2. Example laminates presented in this manuscript

Laminate A Laminate B Laminate C

Lamina 3 Carbon 0o Carbon 0o Carbon 0o

Ex x = 119000 N/mm2 Ex x = 119000 N/mm2 Ex x = 119000 N/mm2

Gxz = 4230 N/mm2 Gxz = 4230 N/mm2 Gxz = 4230 N/mm2

Thickness= 1mm Thickness= 1mm Thickness= 1mm

Lamina 2 Carbon 0o Carbon 90o Modified Carbon 90o

Ex x = 119000 N/mm2 Ex x = 9270 N/mm2 Ex x = 9270 N/mm2

Gxz = 4230 N/mm2 Gxz = 3228 N/mm2 Gxz = 323 N/mm2

Thickness= 1mm Thickness= 1mm Thickness= 1mm

Lamina 1 Carbon 0o Aluminium Carbon 0o

Ex x = 119000 N/mm2 Ex x = 68900 N/mm2 Ex x = 119000 N/mm2

Gxz = 4230 N/mm2 Gxz = 26200 N/mm2 Gxz = 4230 N/mm2

Thickness= 1mm Thickness= 1mm Thickness= 1mm

As a comparison with the present beam theory, the beam loading configuration and the three laminates discussed
were also analyzed using an Euler-Bernoulli beam model, a Timoshenko beam model, and a Zigzag beam model,
wherein said Zigzag beam model utilized the HLMZFS procedure24 in order to partition each lamina into 64 laminae.

The section constants calculated for each beam configuration are given in Table 3. It should be noted that the values
of Λxz used for the present beam model differ from the values of κz AGxz used for the Timoshenko beam model. The
values of Λxz used for the present beam model were calculated in accordance with the method presented in Section
4.3. Conversely, the values of κz AGxz used for the Timoshenko beam model were calculated using the “directional
shear energy” method discussed in5, wherein shear strains were defined in terms of Vz BC

by substituting equation
(8) into equation (26) or (27). It is worth noting that this “directional shear energy” method of calculating κz AGxz
constitutes a modified version of the method presented in7.

Table 3. Section constants for the example laminates presented in this manuscript

Laminate A Laminate B Laminate C

EI y y 267750.0 Nmm2 191600.7 Nmm2 258605.8 Nmm2

β1z (Present Beam Model) 3150.0 Nmm2 6095.3 Nmm2 17188.7 Nmm2

Λxz (Present Beam Model) 10450.6 N 10481.5 N 1321.1 N
κz AGxz (Timoshenko Beam Model) 10575.0 N 10825.9 N 1415.1 N

As a further comparison with the present beam theory, the beam loading configuration and the three laminates
discussed were also analyzed using the finite element method. NX NASTRAN38 was used for this analysis. The beams
were analyzed using two-dimensional shell elements (CQUAD4) and two-dimensional orthotropic (MAT8) material
cards. The mesh was a rectangular grid having a uniform spacing of 0.1 mm. All of the nodes were constrained to
remain within the loading plane. Each of the nodes at the support (x = 12 mm) was restrained against translation
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in the z direction using a single-point constraint (SPC). All of the nodes at the plane of symmetry (x = 0 mm) were
connected to a common central node (independent node) using a rigid body element (RBE2); a transverse force was
applied to the common central node (independent node) of this rigid body element (RBE2), wherein said transverse
force had a magnitude of 100 N (half of the total load), and was applied parallel to the z-axis. In addition, each of the
nodes at the plane of symmetry (x = 0 mm) was restrained against translation in the x direction using a grounded
spring element (CBUSH) with a very high translational stiffness in the x direction. Since all of the beam models
discussed herein assume that εz ≈ 0, where εz is the normal strain that acts parallel to the z-axis, each material,
except aluminium, was assigned a very high elastic modulus parallel to the z-axis (Ezz = 927000.0 N/mm2), and
each material was assigned a Poisson’s ratio of zero. In the case of the aluminium material, an isotropic material
model was used. The deformed shapes of the three finite element models are shown in Figure 3, Figure 4, and Figure
5. Readers who wish to reproduce this analysis are directed to the NX NASTRAN input and output files that the
authors have provided in an online archive37.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

x [mm]

−2

0

2

4

z
[m

m
]

Carbon 0o

Figure 3. Deformed shape of the finite element model of the beam comprising Laminate A. The deformation has been scaled by a factor
of 10
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Figure 4. Deformed shape of the finite element model of the beam comprising Laminate B. The deformation has been scaled by a factor
of 10
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Figure 5. Deformed shape of the finite element model of the beam comprising Laminate C. The deformation has been scaled by a factor
of 10

The following discussion utilizes various plots to compare the analytical results of the various models discussed
herein. In the interest of brevity, these plots abbreviate the various models as follows: the Euler-Bernoulli beam model
is denoted by “Euler-Bernoulli”, the Timoshenko beam model is denoted by “Timoshenko”, the Zigzag beam model
with the HLMZFS procedure is denoted by “Zigzag”, the finite element model is denoted by “FEM”, and the present
beam model is denoted by “Present Model”.

The transverse deflections, w, predicted by each model are shown in Figure 6, Figure 7, and Figure 8. For each
of the finite element models, the transverse deflection at each position along the x-axis is taken as the mean of the
z displacements of all of the nodes that are present at that x position. From examining Figure 6 and Figure 7, it is
evident that the present beam model, the Timoshenko beam model, and the Zigzag beam model all exhibit strong
agreement with the results of the finite element analyses of the beams comprising Laminate A and Laminate B. This
can be attributed to the relatively modest shear deformation, as well as the relatively modest shear-warping stiffness
associated with these beam configurations. The beam comprising Laminate C exhibits significantly greater shear
compliance coupled with significantly greater shear-warping stiffness (as summarized in Table 3); Figure 8 shows
that the Timoshenko beam model over-predicts the transverse deflections while the present beam model slightly
underpredicts the transverse deflections. Additionally, outside the loaded span (for x > 12 mm), the Timoshenko
beam model matches the prediction of the Euler-Bernoulli beam model, while the present beam model and the
Zigzag beam model both follow the prediction of the finite element model much more closely.
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Figure 6. Transverse deflections of the beam comprising Laminate A, predicted by various models
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Figure 7. Transverse deflections of the beam comprising Laminate B, predicted by various models
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Figure 8. Transverse deflections of the beam comprising Laminate C, predicted by various models

The longitudinal displacements, u, predicted by each model are shown in Figure 9, Figure 10, and Figure 11. In the
present beam model, u= uB+uW1. The longitudinal displacements are plotted at the plane of symmetry (x = 0 mm),
midway between the plane of symmetry and the support (x = 6 mm), at the support (x = 12 mm), and at the free
end of the beam (x = 18 mm). The warping of the section is particularly evident for the beam comprising Laminate
C, as the shear deformation of that beam is considerable.
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Figure 9. Longitudinal displacements within the beam comprising Laminate A, predicted by various models at various positions along the
length of the beam
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Figure 10. Longitudinal displacements within the beam comprising Laminate B, predicted by various models at various positions along the
length of the beam
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Euler-Bernoulli FEM Present Model Timoshenko Zigzag

Figure 11. Longitudinal displacements within the beam comprising Laminate C, predicted by various models at various positions along
the length of the beam

The longitudinal normal stress distributions, σx , predicted by each model are shown in Figure 12, Figure 13,
and Figure 14. The longitudinal normal stress distributions are plotted adjacent the plane of symmetry (x = 0.5
mm), midway between the plane of symmetry and the support (x = 6 mm), adjacent the support (x = 11.5 mm and
x = 12.5 mm), midway between the support and the free end of the beam (x = 15 mm), and at the free end of the
beam (x =18 mm). In the case of the beam comprising Laminate A, the present beam model tends to over-predict the
non-linearity of the longitudinal normal stresses near shear force discontinuities, such as those found at the plane of
symmetry (where the shear force changes signs) and at the support (where the shear force changes from a non-zero
value to zero). In the case of the beam comprising Laminate B, the present beam model exhibits relatively strong
agreement with the results of the finite element analysis at all of the investigated positions, while the Zigzag beam
model exhibits moderate agreement with the results of the finite element analysis, and the other models exhibit
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relatively poor agreement with the results of the finite element analysis. In the case of the beam comprising Laminate
C, the present beam model and the Zigzag beam model both exhibit relatively strong agreement with the results of the
finite element analysis at all of the investigated positions, while the other models exhibit relatively poor agreement
with the results of the finite element analysis.
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Euler-Bernoulli FEM Present Model Timoshenko Zigzag

Figure 12. Longitudinal normal stress distribution through the thickness of the beam comprising Laminate A, predicted by various models
at various positions along the length of the beam
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Figure 13. Longitudinal normal stress distribution through the thickness of the beam comprising Laminate B, predicted by various models
at various positions along the length of the beam
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Figure 14. Longitudinal normal stress distribution through the thickness of the beam comprising Laminate C, predicted by various models
at various positions along the length of the beam
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The shear stress distributions, τxz , predicted by each model are shown in Figure 15, Figure 16, and Figure 17. The
shear stress distributions are plotted adjacent the plane of symmetry (x = 0.5 mm), midway between the plane of
symmetry and the support (x = 6 mm), adjacent the support (x = 11.5 mm and x = 12.5 mm), midway between the
support and the free end of the beam (x = 15 mm), and at the free end of the beam (x = 18 mm). In the case of
the beam comprising Laminate A, the Zigzag beam model exhibits relatively strong agreement with the results of the
finite element analysis at all of the investigated positions, though the shear stresses do not vanish at the surfaces of
the beam. In the case of the beam comprising Laminate A, the present beam model tends to over-predict the non-
uniformity of the through-thickness shear stress distribution near shear force discontinuities, such as those found at
the plane of symmetry (where the shear force changes signs) and at the support (where the shear force changes from
a non-zero value to zero). In the cases of the beams comprising Laminate B and Laminate C, the present beam model
exhibits relatively strong agreement with the results of the finite element analysis at all of the investigated positions,
while the Zigzag beam model exhibits moderate agreement with the results of the finite element analysis, and the
other models exhibit relatively poor agreement with the results of the finite element analysis.
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Figure 15. Shear stress distribution through the thickness of the beam comprising Laminate A, predicted by various models at various
positions along the length of the beam
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Figure 16. Shear stress distribution through the thickness of the beam comprising Laminate B, predicted by various models at various
positions along the length of the beam
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Figure 17. Shear stress distribution through the thickness of the beam comprising Laminate C, predicted by various models at various
positions along the length of the beam
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The inaccuracy of the present beam model’s stress predictions in the vicinity of shear force discontinuities can likely
be attributed to the order of the governing differential equations of the model. In each of Laminate B and Laminate
C, any two adjacent laminae exhibit significantly different mechanical properties. The shear-warping displacement
fields of the beams comprising Laminate B and Laminate C are heavily influenced by the heterogeneity of these
laminates, and the influence of this heterogeneity is substantially represented by the component of the shear-
warping displacement field that corresponds to the My y W1 and Vz W1C

terms of the governing differential equations
of the present beam model. Heterogeneous beams (such as those comprising Laminate B or Laminate C) are indeed
influenced by higher-order shear-warping effects; however, the authors believe that this influence is relatively minor
in comparison with the influence of the effects that correspond to the My y W1 and Vz W1C

terms of the governing
differential equations of the present beam model. Conversely, in the case of a homogeneous beam (such as the
beam comprising Laminate A), the authors believe that the shear-warping displacement field exhibits non-trivial
contributions from higher-order shear-warping effects that are not represented by the component of the shear-warping
displacement field that corresponds to the My y W1 and Vz W1C

terms of the governing differential equations of the
present beam model. If it were necessary to achieve accurate stress predictions at all positions within a homogeneous
beam (such as the beam comprising Laminate A), then it would likely be necessary to introduce higher-order terms
to the governing differential equations of the model, as discussed in Section 6.

Notwithstanding the foregoing, the reader will appreciate that, although the fidelity of the stress predictions of the
present beam model appear to be partially dependent upon the heterogeneity of the beam that is to be analyzed, the
present beam model appears to offer accurate predictions of transverse deflections, w, irrespective of the composition
of the beam that is to be analyzed.

9 Concluding Remarks

This manuscript presents a new higher-order beam model. The present beam model is governed by differential
equations that are similar to those present in some existing higher-order beam models; however, the present beam
model makes use of a novel method of calculating the transverse shear stiffness, which facilitates the calculation
of a shear-warping stiffness without the need for an assumed warping displacement field, and without introducing
any additional kinematic variables. Comparisons with the results of finite element analyses suggest that the present
beam model is able to accurately represent the deformation of beams that exhibit non-trivial shear compliance as
well as non-trivial shear-warping stiffness. It was also shown that the present beam model facilitates the recovery of
the distributions of longitudinal normal stresses and transverse shear stresses. These stress distribution predictions
are generally more accurate than those calculated using Euler-Bernoulli or Timoshenko beam theories. In the case
of heterogeneous laminated composite beams, the present beam model offers stress distribution predictions that are
slightly more accurate than those offered by zigzag models; however, in the case of a homogeneous beam, it was
shown that the present beam model gives some erroneous stress predictions in vicinities where the transverse shear
force distribution exhibits a discontinuity. The authors postulate that the governing equations of the present beam
model constitute the first few terms of an infinite series, and it is suggested that the fidelity of the present beam model
can likely be improved by continuing the development of said hypothetical infinite series, thus adding higher-order
terms to the governing equations.
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