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Abstract

In the aerospace composites industry, new material lots are tested to determine
if they are suitable for use. It is common to accept or reject the material lot by
comparing the sample mean and lower extremum to reference values that are estab-
lished based on an initial (qualification) sample of material property measurements.
Current industry practices assume that the samples are drawn from a normal dis-
tribution with known parameters equal to the mean and standard deviation of the
qualification sample: this assumption yields a producer’s risk that is too high. This
paper presents a two-sample method of setting these reference values, considering
the sampling distribution of the qualification sample. This new method is validated
through simulation which shows that it produces the correct probability of Type I er-
ror. Simulation is also used to investigate the statistical power of the new method and
it is compared to others commonly used. A case study is presented to demonstrate
the use of the new method using composite material data from industry.
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1 Introduction

When an aircraft built from composite materials is developed, the materials are tested
to determine their strengths. In industry, these data are called the qualification sample.
Based on the qualification sample, lower tolerance limits are computed (see for example Kr-
ishnamoorthy and Mathew (2008), or Meeker et al. (2017)). These lower tolerance bounds,
often called “Basis Values” in industry, are used in the structural design. Depending on
the type of structure, these Basis Values have a content of either 90% or 99% with a lower
confidence limit of 95%: these are intended to provide a level of assurance that the struc-
ture will be able to carry the required loads given the variability and uncertainty of the
material properties. If those Basis Values are found to be non-conservative (for example,
due to process deviations when manufacturing the material), then the structural design of
the aircraft may be inadequate to withstand the required loads. To guard against such a
scenario, acceptance criteria for new lots of material are set and each new material lot is
tested. The purpose of setting these acceptance criteria is to reject lots that differ from
the material tested when computing the Basis Values, and would therefore invalidate the
structural design. In contrast with applications such as fill-weight targets, where the distri-
bution parameters are specified and acceptance criteria are set to ensure that the process
produces the desired distribution, in the aerospace composite material industry, the only
purpose of setting acceptance criteria is to ensure that the distribution of the material
property follows the same distribution as the qualification sample, which was used to set
the Basis Values.

It is common practice in industry to set lower limits for the lot mean and the lower
extremum from the lot (often called the minimum individual or the first order statistic)
when determining whether to accept a lot. In fact, such an approach is recommended by
the Federal Aviation Administration (FAA), which regulates civil aviation in the United
States (Tomblin et al., 2003).

Several authors have developed statistical methods for setting so-called dual-acceptance
criteria which determine whether to reject a lot based on the sample mean and an order
statistic. Croakin and Yang (1982) provide two approximations to the joint distribution of
a sample mean and the kth order statistic of that sample: one such approximation assumes
independence of the sample mean and the kth order statistic; the other is a large sample
approximation. Vangel (2002) focused on the case where the first order statistic and the
sample mean are used and developed a saddlepoint approximation to the joint distribution
of the acceptance sample mean and lower extremum, assuming that the data are normally
distributed. Ma and Robinson (2011) developed an expression based on the sample mean
and the truncated sample mean which produces acceptance criteria similar to those of
Vangel, but that are simpler to compute, though with a corresponding increase in error (on
the order of a few percentage points in some cases).

Croakin and Yang (1982), Vangel (2002) and Ma and Robinson (2011) all consider the
case where the population parameters for the manufacturing process are known and develop
various dual-acceptance criteria to determine whether a sample is drawn from this known
distribution. This assumption of known population parameters is violated for aerospace
composite materials, where it is common for qualification samples to have a size of 18, or
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in some cases 30 for each material property (CMH-17-1G, 2012). These relatively small
qualification samples produce large uncertainty in estimating the population parameters,
but these small samples are used due to the high financial cost of producing the test
specimens themselves and the high cost of measuring the material properties.

Later research considers the slightly different case of dual acceptance criteria with fixed
limits. These fixed limits would typically be set to control the weight or volume of packaged
goods. Linkletter et al. (2012) developed an approximation to the probability of acceptance
of a sample from a process with one or several sources of variability. Edirisinghe et al. (2020)
studied the coverage probabilities of two dual-acceptance criteria applicable to processes
with a single source of variability: both a generalized pivotal quantity approach and an
accelerated parametric bootstrap approach were used in that work. Neither Linkletter et al.
(2012) nor Edirisinghe et al. (2020) discuss the setting of the limits for the dual-acceptance
criteria, but instead focus on the properties of the acceptance criteria themselves: this work
is important to industries where acceptance limits are set by regulation or are based on
labeled minimum net quantities. However, for aerospace composite materials, there are no
such predetermined acceptance limits, but instead the purpose of acceptance testing is to
ensure that new material lots follows the same distribution as the qualification sample.

When using the current methods of setting acceptance criteria which assume known
population parameters, such as that proposed by Vangel, practitioners resort to using the
point-estimates of the parameters from the qualification sample. The small qualification
samples common in industry provide a relatively poor estimate of the population param-
eters, so the acceptance criteria developed often have Type I error rates that are greater
than the nominal value of α, as is shown in Section 6 of this article. To combat the inflated
Type I error rates, practitioners resort to selecting relatively low nominal values of α. The
current industrial practice is to use α = 0.01 for lot acceptance and α = 0.05 when assess-
ing changes to the manufacturing process or a new manufacturing site (CMH-17-1G, 2012).
When a practitioner selects a lower nominal value of α, there is a corresponding reduction
in the statistical power of the test. Hence, a robust method to determine acceptance criteria
is required that has a Type I error rate equal to the nominal value of α for small samples:
a two-sample test is proposed here by the author. This proposed two-sample method uses
the sample mean and standard deviation of the qualification sample, and the mean and
lower extremum (minimum individual) of the acceptance sample to reject lots of material
that do not come from the same distribution as the qualification sample.

Despite the stated goal of ensuring that lower tolerance limits developed during quali-
fication testing remain valid for new lots of material, to date, relatively little emphasis has
been placed on the power of the acceptance tests for aerospace composite materials. The
size of the qualification and acceptance samples, as well as nominal values of α are typi-
cally based on experience from previous aircraft programs, rather than being determined
by power calculations. The power of the proposed dual-acceptance test is investigated to
enable the quality professional to rationally determine samples sizes based on effect sizes
that would be of concern for the structural application.

The body of this paper is broken down as follows. First, the derivation of the new
method is presented. Second, the computational methods required for this method are
discussed and tables and software are provided so that the practitioner is not required
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to perform the computations themselves. Next, simulation is used to verify that the new
method produces the correct probability of Type I error, to investigate the statistical power,
to compare this new method with other methods in use in industry, and to examine the
performance of the method with distributions other than normal. Finally, a case study using
real composite material data to demonstrate the utility of the new method is presented.

2 Development of the acceptance criteria

Let the qualification sample be an iid sample of size n from a normal distribution with
(unknown) parameters µ and σ. The qualification sample is denoted as {X1, X2, ..., Xn}.
The acceptance sample is assumed to be an iid sample of m observations drawn from the
same normal distribution and is denoted as {Y1, Y2, ...., Ym}.

In the derivation of the distribution functions, the following pivotal quantities will be
used:

V =
X̄ − µ
σ

(1)

W =
S

σ
(2)

where X̄ and S are the mean and standard deviation of the qualification sample, respec-
tively.

The variables V and W are distributed according to V ∼ N
(

0, 1√
n

)
and (n− 1)W 2 ∼

χ2
n−1, respectively. The pdfs of the variables V and W are therefore:

fV (v;n) =
√
nφ
(
v
√
n
)

(3)

fW (w;n) =
(n− 1)(n−1)/2wn−2e−(n−1)w2/2

Γ ((n− 1) /2)× 2
(n−1)

2
−1

(4)

The acceptance data will be transformed as follows:

Zi =
Yi − µ
σ

(5)

Since V and W are pivotal quantities, the coverage probability for the lower extremum
of the acceptance sample, CPY(1) , is given by the following expression. See, for example,
Meeker et al. (2017) for a discussion of coverage probabilities.

CPY(1) (k1) = Pr
[
Y(1) ≤ X̄ − k1S

]
= Pr

[
Z(1) ≤ V − k1W

]
= EV,W

[
Pr
(
Z(1) ≤ V − k1W |V,W

)]
=

∫ ∞
−∞

∫ ∞
0

Pr
(
Z(1) ≤ v − k1w|v, w

)
fV (v;n) fW (w;n) dw dv

=

∫ ∞
−∞

∫ ∞
0

{1− [1− Φ (v − k1w)]m} fV (v;n) fW (w;n) dw dv (6)
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where k1 is a constant that will be found later and Y(1) and Z(1) denote the lower extremum
of the acceptance sample and the transformed acceptance sample, respectively.

The coverage probability for the mean of the acceptance sample, CPȲ , can be obtained
using the same procedure and can be simplified to:

CPȲ (k2) = 1− tn−1

[
k2

(
1

n
+

1

m

)− 1
2

]
(7)

where k2 is a constant that will be found later and tn−1 is the pdf of the t-distribution with
n− 1 degrees of freedom.

Vangel (2002) developed a saddlepoint approximation to the joint distribution of the
acceptance sample mean and lower extremum which assumed that the acceptance sample
was drawn from a normal distribution with known parameters. Vangel’s approximate joint
distribution, F̃Y(1),Ȳ , can be integrated over the distributions of V and W to remove the
assumption that the distribution parameters are known. The coverage probability for the
joint distribution of the acceptance sample mean and its lower extremum is thus:

CPY(1),Ȳ
(k1, k2) =

∫ ∞
−∞

∫ ∞
0

F̃Y(1),Ȳ (v − k1w, v − k2w) fV (v;n) fW (w;n) dw dv (8)

where F̃Y(1),Ȳ (t1, t2) is from Vangel (2002) and is defined as:

F̃Y(1),Ȳ (t1, t2) =

∫ λ̂
−∞Φ (

√
mt2)A (t) dt+

∫∞
λ̂

Φ
{√

m
[
t1 + m−1

m
(h (t)− t)

]}
A (t) dt∫∞

−∞A (t) dt

(9)

A (t) = h−(m−1) (t) exp

[
(m− 1)2

2m
(h (t)− t)2 + (m− 1) t (h (t)− t)

]√
1− h2 (t) + th (t)

(10)

where h (t) is the normal hazard function and λ̂ is the solution to:

m− 1

m

(
h
(
λ̂
)
− λ̂
)

= t2 − t1 (11)

Acceptance criteria are constructed such that a lot is (falsely) rejected with a probability
of α. Since a lot would be rejected if either of the mean or minimum criteria are violated,
this implies that:

α = CPY(1) (k1) + CPȲ (k2)− CPY(1),Ȳ
(k1, k2) (12)

If we set the condition that CPY(1) (k1) = CPȲ (k2), unique values for k1 and k2 can be
obtained for each combination of the variables α, n and m.

Once the values k1 and k2 are determined, acceptance criteria for the lot minimum (A1)
and lot mean (A2) for a particular material property can be set as follows:

A1 = X̄ − k1S (13)

A2 = X̄ − k2S (14)
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where X̄ and S are the mean and standard deviation of the qualification sample, respec-
tively.

One may question why the method of Vangel (2002) was used as a basis for the present
acceptance criteria rather than the method of Ma and Robinson (2011). While the expres-
sion developed by Ma and Robinson is simpler, the Monte Carlo simulation performed by
Ma and Robinson shows a relative error between their approximation of the joint distribu-
tion of the sample mean and lower extremum and the simulation results of up to several
percentage points for a standard normal distribution. For this reason, Vangel’s work is
preferred as a basis for the present work.

3 Computation of k1 and k2

Since the factors k1 and k2 depend only on the values of the qualification sample size
(n), the acceptance sample size (m) and α, values of these factors can be tabulated. These
factors have been computed for select values of n, m and α using a a program written using a
combination of C++ and the R language (R Core Team, 2021) (see supplemental material).
The computed factors k1 and k2 are given in Table 1 and 2, respectively. These tables also
list the factors computed using the method given in Vangel (2002), which correspond to
the case of n =∞: these are computed using the R package cmstatr (Kloppenborg, 2020),
which produced values equal to those published by Vangel within three decimal places.

Computation of the factors k1 and k2 using a naive approach is computationally expen-
sive due to the need to perform a triple-integration complicated function given in equations
8 and 9 in which the bounds of the innermost integral depend on the values of the other
two variables of integration. The author has found that a naive implementation using the
quadrature routines in the GNU Scientific Library (Galassi, Davies, Theiler, Gough, Jung-
man, Booth, and Rossi, Galassi et al.) takes an extremely long time to produce results
(on the order of hours). The author has developed a software package, which is provided
in the supplementary material, that produces results within a few seconds on a modern
personal computer. This software package relies on a bespoke quadrature routine which is
optimized for integration of this particular function.
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Table 1: Factors for the lower extremum (k1) for lot acceptance

Acceptance sample size (m)

n 3 4 5 6 7 8 9 10

α = 0.05

12 2.765 2.938 3.069 3.178 3.266 3.342 3.406 3.465
18 2.601 2.753 2.867 2.959 3.036 3.102 3.157 3.207
24 2.524 2.668 2.776 2.861 2.932 2.990 3.043 3.090
30 2.483 2.621 2.724 2.804 2.872 2.929 2.979 3.022
36 2.454 2.589 2.688 2.768 2.832 2.888 2.938 2.980
50 2.416 2.546 2.642 2.718 2.781 2.833 2.879 2.920

100 2.369 2.492 2.584 2.656 2.715 2.765 2.809 2.847
1000 2.328 2.447 2.533 2.602 2.659 2.706 2.747 2.784
∞ 2.324 2.442 2.529 2.597 2.653 2.700 2.741 2.777

α = 0.01

12 3.746 3.934 4.062 4.180 4.273 4.355 4.426 4.484
18 3.418 3.570 3.676 3.770 3.840 3.910 3.957 4.016
24 3.277 3.406 3.506 3.582 3.652 3.711 3.758 3.805
30 3.195 3.312 3.406 3.488 3.547 3.600 3.646 3.688
36 3.137 3.260 3.348 3.418 3.477 3.529 3.570 3.617
50 3.066 3.184 3.266 3.336 3.389 3.436 3.477 3.512

100 2.984 3.090 3.166 3.230 3.277 3.324 3.359 3.395
1000 2.914 3.008 3.078 3.137 3.184 3.225 3.260 3.289
∞ 2.903 3.000 3.071 3.128 3.175 3.215 3.250 3.281

α = 0.005

12 4.180 4.367 4.508 4.625 4.719 4.812 4.883 4.953
18 3.758 3.898 4.016 4.109 4.180 4.250 4.297 4.344
24 3.570 3.711 3.805 3.875 3.945 4.004 4.062 4.098
30 3.477 3.594 3.688 3.758 3.828 3.875 3.922 3.957
36 3.406 3.523 3.617 3.688 3.734 3.781 3.828 3.875
50 3.324 3.430 3.512 3.570 3.629 3.676 3.711 3.758

100 3.219 3.312 3.395 3.453 3.500 3.547 3.570 3.605
1000 3.125 3.219 3.289 3.336 3.383 3.430 3.453 3.488
∞ 3.120 3.210 3.278 3.331 3.375 3.413 3.446 3.475
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Table 2: Factors for the mean (k2) for lot acceptance

Acceptance sample size (m)

n 3 4 5 6 7 8 9 10

α = 0.05

12 1.330 1.198 1.109 1.047 0.998 0.959 0.927 0.901
18 1.243 1.110 1.020 0.954 0.904 0.864 0.831 0.803
24 1.201 1.068 0.977 0.910 0.858 0.817 0.783 0.755
30 1.179 1.044 0.952 0.884 0.831 0.789 0.755 0.726
36 1.162 1.027 0.935 0.866 0.813 0.771 0.736 0.707
50 1.140 1.005 0.911 0.842 0.789 0.745 0.709 0.680

100 1.113 0.976 0.882 0.812 0.756 0.712 0.675 0.644
1000 1.089 0.951 0.855 0.784 0.728 0.682 0.644 0.612
∞ 1.087 0.949 0.853 0.781 0.725 0.679 0.641 0.609

α = 0.01

12 1.934 1.741 1.605 1.513 1.441 1.385 1.339 1.299
18 1.759 1.569 1.436 1.343 1.269 1.214 1.163 1.128
24 1.682 1.487 1.357 1.261 1.189 1.132 1.083 1.045
30 1.636 1.440 1.310 1.218 1.143 1.084 1.037 0.996
36 1.602 1.413 1.282 1.186 1.112 1.054 1.004 0.966
50 1.562 1.374 1.242 1.147 1.071 1.011 0.962 0.920

100 1.515 1.324 1.192 1.096 1.018 0.959 0.908 0.866
1000 1.474 1.279 1.146 1.049 0.972 0.911 0.859 0.815
∞ 1.467 1.275 1.143 1.044 0.968 0.906 0.855 0.811

α = 0.005

12 2.193 1.971 1.820 1.713 1.630 1.570 1.516 1.475
18 1.967 1.747 1.605 1.500 1.417 1.355 1.299 1.254
24 1.864 1.655 1.508 1.398 1.319 1.255 1.206 1.158
30 1.812 1.596 1.453 1.345 1.268 1.201 1.148 1.101
36 1.772 1.560 1.419 1.313 1.227 1.160 1.108 1.067
50 1.725 1.511 1.368 1.258 1.179 1.113 1.057 1.016

100 1.664 1.449 1.309 1.202 1.118 1.054 0.993 0.948
1000 1.608 1.399 1.255 1.144 1.061 0.997 0.937 0.892
∞ 1.605 1.394 1.249 1.141 1.057 0.989 0.933 0.885
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4 Validation

To validate the present two-sample test and the factors presented in Tables 1 and 2, a
simulation study was performed. A total of 5000 simulated qualification samples were
drawn from a standard normal distribution. Acceptance criteria for the mean and lower
extremum were calculated for each of these qualification samples using Equations 13 and
14 for α = 0.05. For each qualification sample, 5000 simulated acceptance samples were
drawn from the same population and those samples are compared against the acceptance
criteria. This simulation is repeated for several combinations of qualification sample size,
n, and acceptance sample size, m. The rejection rate from this simulation is shown in
Figure 1. It can be seen that the simulated rejection rate is very nearly equal the selected
value of α.

The same simulation was repeated using the the techniques from (Vangel, 2002). These
results are also shown in Figure 1. It is evident that Vangel’s approach yields acceptance
criteria that cause far too many acceptance samples to be rejected, especially for modest
qualification sample sizes. Recall that typical qualification samples (n) used in industry
have a size of 18 or 30. The mismatch between the selected value of α and rejection rate
of Vangel’s method is noted in Section 7 of Vangel (2002).

Two−Sample Vangel

25 50 75 100 25 50 75 100
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m

4
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10

Figure 1: Probability of rejecting a lot. Qualification sample size is n,
acceptance sample size is m, α = 0.05. Qualification and acceptance
samples drawn from the same distribution.

5 Power

The power of the present two-sample test is an important consideration when selecting
sample sizes. Once the practitioner determines the effect size that should be detected and
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the desired value of α, they can select appropriate sample sizes for the qualification and
acceptance samples.

The power of the present two-sample test was investigated through simulation. Simu-
lated qualification samples were drawn from a normal distribution with parameters µ and
σ; this was repeated for 2500 qualification samples. For each qualification sample, 2500
simulated acceptance samples were generated; each set being drawn from a normal distri-
bution with µ and/or σ that are different from the qualification distributions by various
amounts. This was repeated for several combinations of qualification sample size, n and
acceptance sample size, m. In all cases, α = 0.05 was used.

m = 8 m = 10

m = 4 m = 6
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Figure 2: Probability of rejecting a lot for the RM case. Qualification
sample size is n, acceptance sample size is m, α = 0.05. Acceptance
sample is drawn from N (µ− δσ, σ).

First, a reduced mean (RM ) case is investigated. Here, the acceptance samples are
drawn from an N (µ− δσ, σ) distribution, where δ ≥ 0. Figure 2 shows the result of this
simulation study. It is common in industry for qualification samples to have a size of 18
and acceptance samples to have a size of 6: in that case, the present two-sample test has
a power of 0.8 for detecting a reduction in mean of 1.37σ.

Next, an increased standard deviation (ISD) case is investigated. In this case, the
acceptance samples are drawn from an N (µ, δσ) distribution, where δ ≥ 1. Figure 3 shows
the results of this simulation study. For the case where n = 18 and m = 6, the present
two-sample test has a power of 0.8 for detecting a standard deviation that it at least 4.30
times the that of the qualification population.

Vangel (2002) notes that in some cases, it is more important to be able to detect very
low values than it is to detect high variance. To investigate this scenario, a low minimum
individual (LMI ) case is considered. In the LMI case, the acceptance sample comprises of
one observation drawn from an N (µ− δσ, σ) distribution and m− 1 observations from an
N (µ, σ) distribution where δ ≥ 0. Figure 4 shows the results of the simulation study for
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Figure 3: Probability of rejecting a lot for the ISD case. Qualification
sample size is n, acceptance sample size is m, α = 0.05. Acceptance
sample is drawn from N (µ, δσ).
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Figure 4: Probability of rejecting a lot for the LMI case. Qualification
sample size is n, acceptance sample size is m, α = 0.05. One observation
of acceptance sample is drawn from N (µ− δσ, σ), remaining observa-
tions are drawn from N (µ, σ).

this case. In this case, when n = 18 and m = 6, the present two-sample test has a power
of 0.8 for detecting a single value that is drawn from a distribution with mean 3.90σ below
the qualification mean. Note that while the power of this test increases with qualification
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sample size, n, it decreases with increasing acceptance sample size, m. This is due to the
distribution of the acceptance sample, which in this example, departs substantially from
normality.

Appendix B contains results of a simulation study where the acceptance sample is drawn
from a mixture distribution (MD) containing observations from a N (µ− δσ, σ) distribution
with probability 0.4 and the remaining observations a N (µ, σ) distribution. The results are
qualitatively similar to those from the LMI case, though unlike the LMI case, the power
increases with increasing acceptance sample size, m.

Appendix C contains plots of effect size that can be detected with a statistical power
of 80% versus sample size for the four cases (RM, ISD, LMI and MD) considered in the
present simulation study. While these plots contain the same information as Figures 2
through 4, they may be more useful for a practitioner when selecting required samples
sizes to detect a certain effect size.

6 Comparison with other methods

The present two-sample method has been compared with two other methods of setting
acceptance criteria: the method proposed by Vangel (2002) and a mean and standard
deviation (MSD) criteria (which is used as a comparison in Vangel’s paper). The present
simulation study is restricted to the evaluation of criteria with limits that can be pre-
computed based only on the qualification sample without prior knowledge of the acceptance
sample. This is done in industry when writing a requirements document for future lots of
material (usually called a material specification).

For the MSD criteria, acceptance limits are set for the acceptance sample mean and
the acceptance sample standard deviation. One-sided prediction intervals for the mean and
standard deviation are used to set acceptance limits. Full details are given in Appendix
A. The use of one-sided prediction intervals, rather than traditional hypothesis testing (i.e.
using two-sample t-tests and F-tests) allows pre-computing of the acceptance limits.

A simulation study similar to that described in Section 5 was performed for the three
methods of setting lot acceptance criteria: the present two-sample method, the method
of Vangel (2002) and the MSD method described above. The same three cases (RM, ISD
and LMI ) were considered. The results of these simulations for n = 18 and m = 6 are
presented in Figures 5 through 7. Additionally, Appendix B contains a comparison of the
power of these three criteria for the MD case.

The RM case is shown in Figure 5. As previously discussed, the false positive rate of
Vangel’s method exceeds the set value of α (this corresponds with δ = 0 in this figure),
thus making the use of this method undesirable in practice due to an unexpectedly high
producer’s risk. The present two-sample test has a slightly greater power for detecting
reduced mean than the MSD criteria.

Figure 6 shows the ISD case. Again, the method of Vangel falsely rejects too many
lots that are drawn from the same distribution as the qualification sample. The MSD
criteria has a much higher power for detecting increased standard deviation. However, it
is unlikely that a process deviation would cause an increase in the standard deviation that
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Figure 5: Probability of rejecting a lot for RM case for various lot
acceptance criteria with α = 0.05. Acceptance sample is drawn from
N (µ− δσ, σ).
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Figure 6: Probability of rejecting a lot for ISD case for various lot accep-
tance criteria with α = 0.05. Acceptance sample is drawn from N (µ, δσ).

can be reliably detected by any of these criteria (increasing the standard deviation by a
factor of 2.65 times for the MSD criteria or 4.30 times for the two-sample method) without
affecting the mean. In order for the mean to remain unchanged, the density of both the left
tail and the right tail would need to be increased. While a process deviation could certainly
add density of the left tail (i.e. reduce material strength), it is unlikely that for a modern
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composite material, a process deviation would substantially increase the strength of some
portion of the material. Therefore, the performance of the various acceptance criteria for
the ISD case is less important than for other cases.

Nominal α = 0.05

n = 18

m
 =

 6

0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

δ

R
e
je

c
ti
o

n
 R

a
te Method

Two−Sample

Vangel

MSD

Figure 7: Probability of rejecting a lot for LMI case for various lot
acceptance criteria with α = 0.05. One observation of acceptance sam-
ple is drawn from N (µ− δσ, σ), remaining observations are drawn from
N (µ, σ).

Figure 7 shows the LMI case. Here, the present two-sample test has a higher power
than the MSD criteria and also has the correct rate of Type 1 error, whereas the criteria
based on Vangel does not.

7 Other Distributions

Each of the three acceptance criteria discussed in Section 6 assume normal distributions. To
investigate the effect of violating this assumption, the same simulation study was repeated
for lognormal and Weibull distributions. These distributions were chosen since both have
historically been used to describe composite material strength data.

The simulation from Sections 4, 5 and 6 was repeated for samples drawn from a lognor-
mal and a Weibull distribution. For both distributions, a mean of 100 and a coefficient of
variation (CV) of 6% is used for the qualification sample. The parameters for the distribu-
tions of the acceptance samples are selected such that the acceptance distribution mean is δ
times the qualification population standard deviation less than the qualification population
mean. That is:

(mean)acceptance = (mean)qualification − δ · (SD)qualification

Further details of the selection of parameters are available in the supplemental material.
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Figures 8 through 11 show the statistical power found from the simulations using log-
normal and Weibull distributions. For lognormal distributions, the present two-sample
method exhibited moderate differences between the nominal value of α and the Type I
error rate for the typical qualification sample size of n = 18 and increasing Type I error
rates for larger values of n. For Weibull distributions, the present two-sample method had
very large Type I error rates. For both lognormal and Weibull distributions, the present
two-sample method had higher statistical power than the MSD criteria. As was seen in
the normal distribution simulations, Vangel’s method had higher power than the present
two-sample method with a corresponding increase mismatch between the Type I error rate
and the nominal value of α.
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Figure 8: Probability of rejecting a lot for lognormal qualification and
acceptance samples. Qualification sample size is n, acceptance sample
size is m, α = 0.05. Acceptance sample is drawn from a distribution with
a mean that is δ times the standard deviation less than the qualification
population mean.
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Figure 9: Probability of rejecting a lot following a lognormal distribution
for various lot acceptance criteria with α = 0.05. Acceptance sample is
drawn from a distribution with a mean that is δ times the standard
deviation less than the qualification population mean.
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Figure 10: Probability of rejecting a lot for Weibull qualification and
acceptance samples. Qualification sample size is n, acceptance sample
size is m, α = 0.05. Acceptance sample is drawn from a distribution with
a mean that is δ times the standard deviation less than the qualification
population mean.

16



Nominal α = 0.05

n = 18

m
 =

 6

0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00

δ

R
e
je

c
ti
o
n
 R

a
te Method

Two−Sample

Vangel

MSD

Figure 11: Probability of rejecting a lot following a Weibull distribution
for various lot acceptance criteria with α = 0.05. Acceptance sample
is drawn from a distribution with a mean that is δ times the standard
deviation less than the qualification population mean.

17



8 Case study

A manufacturer of composite components that specializes in making parts for regional jets
and business jets has been using a particular composite material for several years. This
material originally underwent qualification testing: for one of the material properties, the
qualification sample had a size of 22, a mean of 255 and a standard deviation of 18.7.
Based on this qualification sample, the manufacturer has calculated a Basis value with
90% content and a lower confidence limit of 95%. This so-called B-Basis value was 220 and
is used in the structural design of certain components of a business jet.

The manufacturer has set acceptance limits for the mean and minimum individual
using the method of Vangel (2002), and uses acceptance samples of 3 specimens. As is
routinely done in industry, they have assumed that the qualification sample mean and
standard deviation are equal to the population parameters. The manufacturer has elected
to set α = 0.01, which results in acceptance limits of 201 for the minimum individual and
227 for the mean. Based on these limits, they have rejected 3 out of the last 139 lots
(2.2% of the lots). Process records for the rejected lots were thoroughly reviewed and new
acceptance samples were tested from each rejected lot — all of which passed — leading the
manufacturer to believe that these lots were initially rejected in error.
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Figure 12: Lot mean and lot minimum for the previous 139 lots of a
composite material. Acceptance limits based on Vangel (2002) and the
two-sample method in this paper are shown. Lots which fail either criteria
are indicated. For both acceptance criteria, α = 0.05 is selected.

While the use of α = 0.01 lot acceptance limits are standard practice in the industry
(CMH-17-1G, 2012), the manufacturer is considering revising their acceptance limits to
increase the power of the acceptance test. The manufacturer has decided that they are
willing to accept a Type I error rate of 5%.

The manufacturer has compared the lot acceptance data from the previous 139 lots of
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material to acceptance limits based on Vangel’s method and the two-sample method with
α = 0.05 as shown in Figure 12. They were surprised to find that Vangel’s method with
α = 0.05 would have rejected 7.9% of the previous production lots and are worried that
using Vangel’s method with α = 0.05 would result in production delays due to erroneously
rejected lots of good material. While the rejection rate that the manufacturer found is
not significantly different from the selected value of α (the 95% confidence interval is 4.0%
to 13.7%), the higher rejection rate observed is consistent with the simulation study from
Section 4, which found that Vangel’s method rejects too many lots (see Figure 1).

If the manufacturer were to use the method of setting acceptance limits presented in
this paper with α = 0.05, they would reject 6 of the previous 139 lots, which represents a
rejection rate of 4.3% (95% confidence interval of 1.6% to 9.2%). This is very close to the
selected value of α and is consistent with the results of the simulation study in Section 4.

Table 3: Type I error rates from the simulation study for n = 22 and
m = 3 compared with the proportion of the previous 139 production
lots that are rejected by Vangel’s acceptance criteria and the two-sample
method in this paper.

Nominal α Method Simulation Study
Type I Error Rate

Production Lots Rejected by Criteria

0.01
Vangel 0.0220 3/139 = 0.0216

Two-Sample 0.0097 2/139 = 0.0144

0.05
Vangel 0.0709 11/139 = 0.0791

Two-Sample 0.0476 6/139 = 0.0432

A simulation study similar to that in Section 6 was performed to compare Vangel’s
method and the two-sample method in this paper for the nominal values of α = 0.01 and
α = 0.05. This simulation study considered samples drawn from N (µ, σ) distributions
where µ varied from 210 to the mean of the qualification sample (255) and σ was set equal
to the qualification sample standard deviation. The Type I error rate for the simulation
study is summarized in table 3. Simulation showed that Vangel’s method with a nominal
value of α = 0.01 has a Type I error rate of that closely matches the proportion of previous
lots rejected, which is roughly twice the nominal value of α. The simulation study also
showed that the Type I error rate for Vangel’s method with a nominal value of α = 0.05
is also well above the nominal α. The Type I error rate of the two-sample method closely
matches the nominal value of α.

Next, the manufacturer reviews the power of the tests from the simulation study, which
is shown in Figure 13. In addition to the acceptance limits based on Vangel’s method
and the present two-sample method, the simulation study also considers the mean and
standard deviation (MSD) criteria discussed in Section 6. The manufacturer notes that
the two-sample method has a higher power than the MSD criteria at the same nominal
value of α. While Vangel’s method has a higher power than the two-sample method at the
same nominal value of α, the unexpectedly high Type I error rate associated with Vangel’s
method causes the manufacturer to decide to use the two-sample method with α = 0.05,
which provides the highest power (of the three methods considered) without exceeding the
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Figure 13: Probability of rejecting a lot drawn from a N (µ, σ) distribu-
tion with σ = 18.73 for the method of Vangel (2002) and the two-sample
method in this paper. The qualification and acceptance sample sizes are
n = 22 and m = 3, respectively.

desired Type I error rate. It should be noted that increasing the size of the acceptance
sample (m) would provide an additional improvement in the power of the test, as suggested
by Figure 2.

This case study shows a real-world scenario where the present two-sample method
produces the correct probability of Type I error, allowing the selection of a higher nominal
value of α and an associated higher power without exceeding a certain tolerable producer’s
risk.

9 Conclusion

A new two-sample method was presented that uses the sample mean and standard deviation
of the qualification sample to set acceptance criteria for the mean and lower extremum
of new lots of material, assuming both samples are drawn from a normal distribution.
This method, like that of Vangel (2002), uses a saddlepoint approximation to the joint
distribution of the mean and lower extremum, but unlike the prior art, this new method
assumes that the population parameters are unknown.

A simulation study confirms that this test has the expected probability of Type I error,
which is an important consideration in industry as falsely rejecting good lots of materials
increases costs and causes delays. Simulation was also used to determine the power of this
test to detect various types of difference between qualification and acceptance samples. The
results of the power simulation can be used by a quality professional to determine sample
size requirements based on an effect size that should be detected.
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Simulation was used to compare the present two-sample test to other lot acceptance
methods; this simulation showed that the present two-sample test performs better than
other methods for detecting certain types of differences between qualification and accep-
tance samples, while maintaining the expected probability of Type I error.

The case study presented in this paper illustrates the use of the proposed method for
setting acceptance limits. The case study shows agreement between results with real-world
composite material data and the simulation studies performed, as well as showing how a
quality professional would use the proposed method.
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A Mean and Standard Deviation Criteria

In Section 6 of this paper, a Mean and Standard Deviation (MSD) criteria is considered.
Many tests that could be properly called a test of mean and standard deviation could be
formulated. However, the formulation of the test used in this paper is described in this
appendix.

This test is formulated so that numeric criteria for an acceptance sample mean and
standard deviation can be computed when only the qualification sample is know.

The test described herein comprises of two parts: a one-sided test for the acceptance
sample mean, and a one-sided test for the acceptance sample standard deviation. For the
test for the acceptance sample mean, the critical (lower) value is given by:

Am = X̄ − t(1−αm;n−1)

(
1

n
+

1

m

) 1
2

S (15)

where αm is the probability of making a Type I error when testing the mean, and the other
symbols have the same meaning as before.

The test for the acceptance standard deviation has a critical (upper) value given by:

As = S
[
F(1−αs;m−1;n−1)

] 1
2 (16)

where αs is the probability of making a Type I error when testing the standard deviation
and F() is the pdf of the F-distribution.

For normally distributed data, the sample mean and standard deviation are indepen-
dent, so the probability of making a Type I error on either test is:

α = αm + αs (17)

We arbitrarily choose the condition that αm = αs, so the critical values become:

Am = X̄ − t(1−α/2;n−1)

(
1

n
+

1

m

) 1
2

S (18)

As = S
[
F(1−α/2;m−1;n−1)

] 1
2 (19)

The astute reader will recognize the critical values computed above as one-sided pre-
diction intervals.

B Mixture Distribution

The simulation from Sections 5 and 6 was repeated for acceptance samples drawn from a
mixture distribution. Each observation in the acceptance sample is drawn fromN (µ− δσ, σ)
with probability 0.4 and the remaining observations are drawn from a N (µ, σ). Such a dis-
tribution might arise if the sampling plan requires periodic measurements from throughout
a production run and an uncontrolled process change occurred partway through the pro-
duction run.
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Figure 14: Probability of rejecting a lot for the MD case. Qualification
sample size is n, acceptance sample size is m, α = 0.05.

The power for this mixture distribution (MD) case is shown in Figure 14. For the case
where n = 18 and m = 6, the present two-sample test has a power of 0.8 for detecting a
value of δ = 3.04.

The power of the present two-sample test is compared with the other methods in 15.
The present two-sample test has higher power than the MSD criteria, and has the correct
Type I error rate, while Vangel’s method does not.
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Figure 15: Probability of rejecting a lot for MD case for various lot
acceptance criteria with α = 0.05.
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C Effect Sizes for Power of 80%

The following plots show the effect size for which the present statistical test has a power
of 80% based on the simulation described in Section 5. Various sizes of the qualification
sample (n) and the acceptance sample (m) are shown. In all cases a value of α = 0.05 is
selected.

The four cases considered (RM, ISD, LMI and MD) are as defined in Section 5 and
appendix B.
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Figure 16: Effect size for a statistical power of 80% for the RM case with
α = 0.05. Acceptance sample is drawn from N (µ− δσ, σ).
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Figure 17: Effect size for a statistical power of 80% for the ISD case with
α = 0.05. Acceptance sample is drawn from N (µ, δσ).
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Figure 18: Effect size for a statistical power of 80% for the LMI case
with α = 0.05. One observation of acceptance sample is drawn from
N (µ− δσ, σ), remaining observations are drawn from N (µ, σ).
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Figure 19: Effect size for a statistical power of 80% for the MD case with
α = 0.05. Acceptance sample drawn from the distribution described in
appendix B.
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