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Abstract

In a race car, the differential plays two important roles which contribute to
the overall performance of the vehicle. First, the differential splits the torque
from the engine to the two driven wheels to produce longitudinal acceleration.
The characteristics of the differential will dictate the maximum attainable
longitudinal acceleration under certain conditions, such as when exiting a
corner. The differential will also impart a yaw moment to the vehicle when
turning which will tend to either turn the car into the turn, or resist the turn.
This is an often overlooked effect of the differential, but can have a significant
effect on the handling of the car. The characteristics of the differential will
dictate the yaw moment produced. This effect has been studied with vehicle
dynamics models, as well as on-track testing. The results of both show the the
differential characteristics that allow the maximum longitudinal acceleration
also produces a yaw moment resisting turning at low levels of acceleration,
and an oversteer yaw moment at high acceleration, making the car more
difficult to drive. The relative importance of these two effects is dependent
on the track being driven. Tracks with lots of sharp corners favor a low-
lock differential, while tracks with fast, large radius corners favor high-lock
differentials.

In order to study the effect of the differential on an actual vehicle, an
adjustable salisbury differential was designed and built for the University
of Toronto Formula SAE car. This differential is unique in the fact that it’s
clutch pack can be adjusted without disassembling the unit. Adjustments can
be made in about two minutes, and it has been found that these adjustments
have a large effect on the handling of the car. The mechanical design of this
differential has used techniques such as CAD, FEA hand calculations and
physical testing. Three iterations of this differential have been designed, and
two have been built and tested. While there have been reliability issues, the
design is converging to a reliable one.
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Table of Variables

A slope of Tc-T line

a addendum

AS axle slip

B preload torque

C ramp coefficient of differential (∂T max
c

∂Tapp
)

CE elasticity coefficient for hertz formula

Cm mean pitch cone radius

Cx longitudinal force coefficient of a tire

D diameter

Dp pitch diameter of a gear

DP diametral pitch

Fpre clutch preload force

Fs separating force for a gear pair

Fx longitudinal force of a tire

Fz vertical force on a tire
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∆Fz weight transfer

I contact stress geometry factor

J bending stress geometry factor

N yaw moment

N number of teeth on a gear

Nc number of clutch plates

Ng number of teeth on side gear

Ns number of teeth on spyder gear

p load per unit length for hertzian contact

Pd pitch diameter of a gear

R turn radius

Rt tire radius

r yaw rate

rc mean radius of clutch plates

rr distance from center of differential to ramp

s dedendum

Tapp torque applied to differential

Tc locking torque of differential

Tmax
c torque required to overcome clutch friction

Tg torque seen by differential gear set

Tl torque applied to left wheel

Tr torque applied to right wheel

Ts torque on spyder gear
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∆T difference between left and right axle torque (|Tl − Tr|)

t track

V velocity

Vl road speed under left wheel

Vr road speed under right wheel

X longitudinal force

Y lateral force

α slip angle

α ramp angle in a salisbury differential

β body slip angle

δ steering angle

φ contact angle

κ slip ratio

µc coefficient of friction of clutch plates

Ω driven axle rotational speed

ωapp rotational speed of differential housing

Ωd difference in left and right wheel speed

Ωl left wheel rotational speed

Ωr right wheel rotational speed

σ stress

6



List of Figures

1.1 Definition of slip angle. Taken from [1] . . . . . . . . . . . . . 18

1.2 Example tire data for pure lateral force generation. Data ob-

tained through the Formula SAE Tire Test Consortium with

the aid of Calspan Tire Research Facility (TIRF). . . . . . . . 19

1.3 Illustration of body slip angle, β, and steering angle, δ. . . . . 20

2.1 Typical layout of a Salisbury differential. Preload spring omit-

ted for clarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Forces on the ramp in a Salisbury differential. . . . . . . . . . 24

2.3 Layout of differential gears . . . . . . . . . . . . . . . . . . . . 25

2.4 Speed of each gear in a differential . . . . . . . . . . . . . . . 25

2.5 Plot of Tmax
c versus applied torque, T for the Mk II differential.

Note the small offset indicating a small preload . . . . . . . . 28

2.6 Tractive effort for various clutch configurations (B = 2.85ft · lb) 29

2.7 Asymmetric ramp angle . . . . . . . . . . . . . . . . . . . . . 31

2.8 Adjustment pins in U of T differential . . . . . . . . . . . . . . 34

2.9 Adjustment pins, Mk II version . . . . . . . . . . . . . . . . . 34

7



3.1 Parts of the U of T differential . . . . . . . . . . . . . . . . . . 37

3.2 Figure showing main gear parameters. Figure taken from [2] . 38

3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Construction surface for one gear tooth flank . . . . . . . . . . 45

3.5 Rendering of finished bevel gear model . . . . . . . . . . . . . 45

3.6 Spyder gear hub sitting in ramp . . . . . . . . . . . . . . . . . 47

3.7 Clutch plates of Mk II . . . . . . . . . . . . . . . . . . . . . . 48

3.8 Testing of inner clutch spline . . . . . . . . . . . . . . . . . . . 49

3.9 Failed inner clutch spline. Note that all teeth are buckled

sideways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 Stress results of the outer clutch spline FEA . . . . . . . . . . 51

3.11 Two piece differential housing . . . . . . . . . . . . . . . . . . 52

3.12 Differential housing parameters . . . . . . . . . . . . . . . . . 54

3.13 Wall thickness FEA results (stress in psi) . . . . . . . . . . . . 55

3.14 Stress results of housing FEA, left side (psi) . . . . . . . . . . 56

3.15 Stress results of housing FEA, right side (psi) . . . . . . . . . 56

3.16 Contact pressure between two halves of differential housing.

Red indicates minimum of 5 psi contact pressure. . . . . . . . 58

3.17 Outer dimension of the Mk I differential . . . . . . . . . . . . 59

3.18 Outer dimension of the Mk II differential . . . . . . . . . . . . 60

3.19 Outer dimension of the Mk III differential . . . . . . . . . . . 60

3.20 Failed Mk II spyder gears . . . . . . . . . . . . . . . . . . . . 62

8



4.1 Yaw moment produced by a differential and a spool. Greed

dots indicate transition points between locked and differenti-

ating operation. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Critical lateral force to lock a salisbury differential. Various

values of C shown. Preload kept constant at 4.11ft · lb. . . . . 67

4.3 Non-linear model output: Yaw moment versus torque for var-

ious lateral accelerations and differential settings . . . . . . . . 69

4.4 Map of track used in testing with sectors identified . . . . . . 71

4.5 In-line acceleration, sector 3 . . . . . . . . . . . . . . . . . . . 72

4.6 In-line acceleration, sector 10 . . . . . . . . . . . . . . . . . . 73

9



List of Tables

2.1 Clutch parameters for the three versions of the U of T differential 28

2.2 Adjustment Configurations . . . . . . . . . . . . . . . . . . . . 35

3.1 Data from benchmarked gears . . . . . . . . . . . . . . . . . . 43

3.2 Material analysis of benchmarked gear . . . . . . . . . . . . . 44

3.3 Weight of each iteration of the U of T differential . . . . . . . 59

3.4 Comparison of gear stress number . . . . . . . . . . . . . . . . 62

10



Chapter 1

Introduction and Background

1.1 Aim of Current Research

A differential is an important part of a race car that can have a large effect

on the car’s performance. It serves two primary purposes. The differential

determines how much torque is distributed to each of the two driven wheels.

This distribution determines the maximum amount of in-line acceleration

possible and also imparts a yaw moment to the car which affects the handling.

In designing a differential for a race car, both of these effects must be carefully

considered. The following document outlines the design of a differential for

the University of Toronto Formula SAE car. This differential was designed

to be adjustable to allow for tuning of the two aforementioned effects. In

order to gain a better understanding of the effect of the parameters of the

differential on the performance of a car, vehicle dynamic simulation and track
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testing is performed.

1.2 Function of a Differential

Since a car has its drive wheels a finite lateral distance apart, when negoti-

ating a corner, the drive wheels must turn at different rates. Let’s call the

distance from the center of the turn to the centerline of the car R, and the

track (distance between the left and right wheels) t. The inside wheel is

running on a circle of radius R − t
2
, while the outside wheel is running on a

circle of radius R + t
2
. The yaw rate, r, of the vehicle in a steady-turn will

be how much of the circle the vehicle negotiates in a unit of time (usually

expressed in rad · s−1). If the tire radius is called Rt, then the inside wheel

will turn at a rate of Ωi =
R− t

2
r

Rt
while the outside wheel will turn at a rate

of Ωo =
(R+ t

2)r

Rt
. Thus, the difference in driven wheel speed will be Ωd = tr

Rt
.

The most basic type of differential is called an open differential. This is

the type of differential found in most road cars. It has the property that it

splits the input torque equally between the two driven wheels. Introducing

the notation for right and left wheel torque, an open differential has the

following property:

Tr = Tl (1.1)

An open differential has the additional property that it will allow com-

pletely free differentiation. The wheel speeds will be whatever they need to
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be in order to satisfy Eq (1.1). If one wheel has considerably less tractive

capacity than the other, this property becomes a problem. Since the wheel

torque must be equal left and right, the wheel with higher tractive capacity

cannot utilize it because it is limited by the lower traction wheel. Such a

situation occurs in a road car when one wheel is on dry pavement and the

other on ice. This is even more of a problem in a racing car where high lateral

accelerations are experienced. The inside wheel will have considerably less

vertical load on it than the outside wheel (due to weight transfer caused by

having a CG above the ground). The less loaded wheel cannot transmit as

much force because the friction with the road is overcome more easily. To

reduce this negative effect, limited slip differentials have been developed.

A limited slip differential (LSD) will resist a difference in wheel speed. A

common way of doing this is to connect the two driven wheels together with

a clutch. Defining the torque that resists differentiation as Tc, the general

expression for left and right wheel torque becomes:

Tr − Tl ≤ sgn (Ωl − Ωr) Tc (1.2)

Where sgn is the sign operator. It has a value of +1 when the argument

is positive and has a value of −1 when the argument is negative.

Eq (1.2) applies for all types of LSDs. What sets the various types of

differentials apart is the function governing Tc.
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1.3 Types of Differentials

Many types of limited slip differentials have been developed over the years.

The most common are:

1. Passive clutch pack

2. Salisbury

3. Torsen

4. Viscous coupling

5. Cam and pawl

6. Detroit locker

As noted earlier, the main feature that sets these types of LSDs apart is

Tc and how it varies. In a passive clutch pack differential, Tc is generated by

two clutch plates being pressed together with a set of springs. The spring

force is constant, and hence, Tc is constant.

A Salisbury differential increases Tc with increased applied drive torque.

Thus, a salisbury differential can be made to be almost open (no resistance

to differentiation) when no drive torque is applied and nearly locked when

drive torque is applied. A Torsen differential has the same characteristics.

The only difference is the manner in which Tc is generated. A Torsen uses the

friction in a helical gear mesh to generate Tc, while a salisbury differential uses
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a clutch pack. For a full discussion of the operation of a Torsen differential,

see [3].

A viscous coupling generates Tc based on the relative speed of the two

drive wheels. The value of Tc is approximately proportional to the difference

in driven wheel speed. A detroit locker is another speed sensing differential.

The Tc for a detroit locker is related to the difference in driven wheel speed,

but not linearly as in a viscous coupling; a detroit locker can only be fully

open or fully locked [4]. A cam and pawl differential is another speed-sensing

differential, but is much more progressive than the detroit locker [4].

It is worth briefly mentioning two other types of differentials: the spool

and the active differential. The former is not actually a differential, but is

usually discussed in the same context. A spool is a device that does not

allow differentiation. The simplest incarnation would be simply connecting

the driven wheels together with a single shaft so that they are constrained

to turn at the same rate. As will be seen, a salisbury differential can act as

a spool under certain conditions. Under these conditions, its effect on the

handling of the car will be identical to that of a spool. An active differential

is conceptually similar to all LSDs, except that the value for Tc is chosen by

a computer. This computer can used any number of variables to choose the

appropriate level of Tc.
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1.4 Choice of the type of differential

The choice of the type of differential to develop for this investigation was

a critical one. First, the speed-sensing differentials were ruled out because

they are inherently reactive devices. In order for them to achieve any level

of Tc, one wheel must be spinning significantly faster than the other. If one

wheel has already started spinning to an extent that a viscous coupling will

start to resist differentiation, it’s too late: the tire has already lost much

its longitudinal and lateral force capacity. A torque sensing differential like

a Salisbury or Torsen has the advantage that the Tc is available before it is

required. While a Torsen is a marvelous mechanical system, the only way that

the characteristics of the differential can be changed is by adjusting the helix

angles of the gears [3]. This rules out making a adjustable Torsen differential.

This leaves only two options for a differential suitable for studying the effects

of a differential on vehicle dynamics: a Salisbury or an active differential. An

active differential was investigated, but preliminary calculations indicated

that the weight of the unit would be many times greater than that of a

Salisbury unit, and the current drain on the car’s electrical system would be

quite high. Thus, a Salisbury type differential was chosen, and designed such

that the clutch pack could be easily adjusted.
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1.5 Mechanical Iterations

In order to study the effect of the differential on track, a differential with an

adjustable clutch was designed and built (see chapter 2 for a description of

what the clutch does and why it’s important). To date, three versions have

been designed. The first two versions, the Mk I and the Mk II, have been

build and tested; the third version, the Mk III, is currently being constructed.

Each new version represents a refinement of the previous version. In all cases,

the goal of the mechanical design was to minimize the weight of the unit while

assuring mechanical reliability throughout a testing season of approximately

four months.

1.6 Vehicle Dynamics Background

Vehicle dynamics is the study of how a car responds to driver input. It is

a key aspect of the design of both road and racing cars. If a road car is

difficult to control – either because the response to driver input insufficient

or because the car is unstable – the average person will not be able to drive it

safely. In the case of a racing car, vehicle dynamics has become an exacting

science. The difference between the podium and the back of the field can be

a very small difference in the dynamics of the car.

The tires are the only part of a car that generate lateral and longitu-

dinal force (aerodynamic devices can generate these forces but will not be

considered here).
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Figure 1.1: Definition of slip angle. Taken from [1]

First, we will look at pure lateral force generation. The way that tires

generate lateral force is through a deformation of the tire tread. The quantity

slip angle, α, is used to quantify the extent of this deformation and used to

determine the resulting force. Figure 1.1 shows the definition of slip angle.

It is the angle between the direction that the wheel is pointing (labeled "tire

heading") and the direction that the wheel is moving (labeled "car heading").

A tire model can be used to determine the lateral force based on the

slip angle and the vertical load. Example tire data is shown in figure 1.2.

Note that at low value of slip angle, the curves are nearly linear. Basic

vehicle dynamics models are often linearized by taking the tire force to be

proportional to the slip angle.

Longitudinal tire force, like lateral force, is generated through tire defor-

mation. In the case of longitudinal force, the deformation is measured with

the slip ratio, κ. This is the ratio of the actual rotational speed of the tire to

18



Figure 1.2: Example tire data for pure lateral force generation. Data obtained
through the Formula SAE Tire Test Consortium with the aid of Calspan Tire
Research Facility (TIRF).

the rotational speed of an undeformed tire. Several mathematical definitions

of slip ratio have been proposed. The SAE definition will be used here and is

shown in Eq 1.3 [5]. The shape of the longitudinal force vs. slip ratio curves

is very similar to the lateral force vs. slip angle curves. Again, models are

often linearized by taking the tangent of the curve near the origin.

κ =
ΩRt

V
− 1 (1.3)

Another important quantity in describing the behavior of an entire car

rather than just a tire is body slip angle, denoted as β. This is the angle

between the car’s longitudinal axis and the tangent to its path, measured at

the center of gravity of the vehicle. This is illustrated in figure 1.3. Also

shown in this figure is steering angle, δ. This is the angle that the front

wheels make with the center line of the car.

Aeronautical engineers pioneered the use of stability and control deriva-

tives to investigate the performance of an airplane [6]. This technique has
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Figure 1.3: Illustration of body slip angle, β, and steering angle, δ.

been extended to cars [7] and can give an engineer a good understanding

of how a vehicle will act. This technique begins by finding the equations of

motion of the vehicle. In classical cases, the equation for lateral force, Y ,

and yaw moment, N are found. This concept will be extended to include

longitudinal acceleration, X.

Once these equations of motion are found, the partial derivatives with

respect to the control variable, steering input, to yield the control derivatives.

These partial derivatives indicate how the vehicle will respond to driver input.

The stability derivatives are found by differentiating the equations of motion

with respect to the state of the vehicle (yaw rate and body slip). These

indicate how stable the vehicle is.
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Small disturbance theory can be used to investigate the response of the

vehicle at small deviations from some initial condition. The stability and

control derivatives are evaluated at this initial conditions (denoted as x0 in

Eq 1.4) and the response if found by using Eq 1.4.

N = N |x=x0
+ Nβ|x=x0

∆β + Nr|x=x0
∆r + Nδ|x=x0

∆δ (1.4)

Note that for brevity, partial derivative notation in the form of Nr will

be introduced. Nr is equivalent to ∂N
∂r

.

This can be simplified considerably if the initial condition chosen is one of

trim (the sum of all the forces and moment are zero). For example, a model

of yaw moment linearized at trim can be written as Eq 1.5. The point that

the partial derivatives are evaluated at have been dropped from the notation

and are understood to be evaluated at a condition of trim.

N =

(
∂N

∂β

)
β +

(
∂N

∂r

)
r +

(
∂N

∂δ

)
δ (1.5)

The most important stability derivative is the yaw damping term, ∂N
∂r

.

This term determines the car’s resistance to spinning. If this were to have

a positive value, the car would be unstable. An positive value of yaw rate,

r, would cause a positive yaw moment, N , which would in turn increase the

yaw rate. In almost ever case, this term is negative so this term serves to

stabilize the car.
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Chapter 2

System Overview

2.1 Overall Layout

A Salisbury differential consists of five basic components: the housing, the

gear set, the ramp, the clutch pack and the preload spring(s). The basic

layout of a Salisbury differential is show in figure 2.1. The bevel gears that

make up the gear set have the same layout as in an open differential. (See [8]

for a discussion of open differentials.) A crucial difference between an open

differential and a salisbury differential is how the spyder gears (see figure

2.3) are attached to the housing. In an open differential, the shaft passing

through the center of both spyder gears is affixed to the housing. This affixed

shaft drives the spyder gears. In a salisbury differential, however, the spyder

gears are not directly attached to the housing. The ramp is fixed in rotation

relative to the housing, but allowed to move along the axis of the differential.

22



Figure 2.1: Typical layout of a Salisbury differential. Preload spring omitted
for clarity

The torque applied to the housing is transmitted to the ramp. The ramp

"pushes" on the spyder gear. Since the face of the ramp is angled, it is thrust

outwards (see figure 2.2). This, in turn applies normal load to the clutch pack,

causing it to increase its resistance to slipping. Half of the clutch plates are

splined to one of the side gears while the other clutch plates are splined to

the housing. When the unit differentiates, the side gear turns with respect

to the housing. The clutch pack resists this rotation. The force on the clutch

pack is dependent on the torque applied to the housing according. Typically,

springs are also installed in the differential to preload the clutch pack.

2.2 Open Differential

The gear set of a salisbury differential operates just as the gears in an open

differential. Two side gears oppose each other – one connected to each half

shaft – and two (or sometimes four) spyder gears mesh with these side gears.
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Figure 2.2: Forces on the ramp in a Salisbury differential.

See figure 2.3 for a graphical description.

A differential has a degree of freedom of 2 [8]. This means that there are

two distinct motions that can be superimposed. The first motion is the whole

differential rotating about the axes of the two side gears. None of the gears

rotate relative to one another in this mode of motion. Referring to figure

2.4, Ωapp = Ωl = Ωr. The section type of motion is differentiation. In this

mode, the spyder gear carrier remains fixed while the gears rotate relative to

one another. If the left side gear is rotating at a rate of Ωl, the the spyder

gear will rotate at a rate of ΩlNg/Ns. The right side gear will then rotate at

a rate of −Ωl (Ng/Ns) (Ns/Ng) = −Ωl. The speeds of the gears in the two

modes superimposed can be written as Eq 2.1. Note that this equation has

one free parameter. In the case of an automotive differential, this parameter

ends up being set by the interactions between the tire and the road.
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Figure 2.3: Layout of differential gears

Figure 2.4: Speed of each gear in a differential
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Ωapp =
Ωl + Ωr

2
(2.1)

When the torque on each of the components of an open differential is

analyzed, the important observation is that the left and right side-gear torque

is always the same. This can be seen by taking a force balance on a spyder

gear. A force is applied in the center by the carrier. This force is reacted by

the two meshes with the side gears. Since the two meshes both occur on the

pitch cone of the spyder gear, they act on the same moment arm. Therefore,

for the moments to balance on the spyder gear, the force applied to each

side gear must be equal. Since the two side gears are of equal diameter, the

torque applied to each is equal.

2.3 Torque Path

In the case of a salisbury differential, the torque applied to the differential

housing, Tapp, is reacted by two components of the differential: the gear set

and the clutch pack. These torques will be called Tg and Tc respectively.

When a given torque is applied to a differential (without a clutch), the right

and left output torque (of the gears), Tr and Tl, will be equal. When a clutch

is added, torque will effectively be transfered from one side of the differential

to the other. The two equations governing this are given as Eq 2.2 and Eq

2.3. The derivations of these expressions are given in appendix B.
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|∆T | = |Tr − Tl| = Tc (2.2)

Tapp = Tg + Tc = Tl + Tr (2.3)

2.3.1 Clutch Torque

The clutch pack generates a friction couple based on the normal force applied

to it. This normal force is generated by both the preload spring and the effect

of the pinion being forced against the ramp. An approximate relationship

between the various parameters of the differential, the applied torque and

the maximum friction torque available from the clutch pack is given as Eq

2.4. This expression is derived in appendix A.

Tmax
c =

CATapp + NcrcµcFpre

1 + CA

(2.4)

Where

CA =
Ncrcµc

rr tan α
(2.5)

See Appendix A for the definitions of the variables used. This expression

can be simplified by defining two variables, C and B which define the slope

of the Tmax
c -Tapp line and the offset from the origin respectively. Since the

coefficient C is controlled by the ramp, it will be called the ramp coefficient.
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Figure 2.5: Plot of Tmax
c versus applied torque, T for the Mk II differential.

Note the small offset indicating a small preload

Setting 1 Setting 2 Setting 3
C B C B C B

Mk I 0.251 9.62ft · lb 0.501 20.2ft · lb 0.626 25.2ft · lb
Mk II 0.316 1.81ft · lb 0.480 2.75ft · lb 0.581 3.32ft · lb
Mk III 0.323 1.85ft · lb 0.489 2.80ft · lb 0.589 3.37ft · lb

Table 2.1: Clutch parameters for the three versions of the U of T differential

B will generally be referred to as the preload. Therefore:

Tmax
c = CTapp + B (2.6)

The clutch torque, Tmax
c for the University of Toronto FSAE differential

is shown in figure 2.5. The U of T differential has adjustment built into it

(see section 2.4), so has different values of C and B depending on the setting.

these values are given in table 2.1. For all three versions of the differential,

preload has been kept low.
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Figure 2.6: Tractive effort for various clutch configurations (B = 2.85ft · lb)

2.3.2 Effect of Clutch Torque on Maximum Tractive Ef-

fort

In the case of different vertical load on the two driven tires or the case of

a split coefficient surface1, the left and right tire reach their traction limits

with different amounts of torque application. The difference between left and

right wheel torque is limited by the differential clutch characteristics, so the

maximum tractive effort is a function of both the surface coefficient for the

two tires and the clutch characteristics.

Figure 2.6 shows the maximum tractive effort for a split coefficient condi-
1A split coefficient surface is a roadway with different coefficients of friction for the

right and left tires. An example of a split coefficient surface would be driving with one
tire in a puddle and the other on dry pavement.
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tion, normalized to the maximum tractive effort when both wheels are on an

equal coefficient surface. This is plotted against the ratio of the two surface

coefficients for various values of the ramp coefficient, C. Maximum tractive

effort is increased by increasing the ramp coefficient of the differential to

provide more "lock." An similar trend would be observed if the vertical load

on the two driven tires was varied through lateral load transfer, as in a turn

– the differential with a higher ramp coefficient would allow greater in-line

acceleration. As will be seen later, however, the ramp coefficient also has

an effect on how the car handles, so a higher value might not necessarily be

better.

2.3.3 Asymmetric Ramps

In most cases, it is desirable to have a different ramp angle for driving and

coasting. Typically, the desired ramp angle is large for driving so that the

differential is locked to maximize tractive effort. For most race cars, however,

it is desirable to have an open differential when coasting (or braking) so that

the differential does not impair turning. To achieve this, different ramp

angles are used on the driving and braking side (see figure 2.7). When a

driving torque is applied to the differential housing, the the pinion is forced

against one side of the ramp, when a braking torque (from engine braking)

is applied to the housing, the pinion is force against the other side of the

ramp. All versions of the U of T differential have had a 450 ramp angle for

driving and 00 for braking. When calculating the clutch torque with Eq 2.4,

30



Figure 2.7: Asymmetric ramp angle

the appropriate ramp angle should be used depending on whether a driving

or braking torque is applied to the differential.

2.3.4 Clutch Hysteresis and Pinion Climbing

An interesting phenomenon becomes evident upon analysis of the ramp sys-

tem in a Salisbury differential. As the torque applied to the housing is

increased, the the pin moves up the ramp. The friction against the ramp

opposes this. Thus, the normal load on the clutch pack will be less than that
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predicted by Eq 2.4. Conversely, when the torque applied to the housing

is reduced, the pin will tend to move down the ramp. Again, friction will

resist this and the normal load on the clutch pack will be greater than that

predicted by Eq 2.4. In fact, as the torque is increased and decreased, a

hysteresis loop will be formed. The effect that this has on vehicle dynamics

has not been investigated but might have a significant effect under certain

circumstances.

Another effect caused by the friction against the ramp is an effect that

can be termed "Pinion Climbing." In order to reduce the overall size of the

differential, hubs on the back of the spyder gears were used to contact the

ramps instead of using the spyder pin as is customary in Salisbury differen-

tials. As the differential is differentiating, the spyder gear rotates relative

to the housing and hence the ramp. When the unit is differentiating in one

direction, the spyder gear will try to "climb" the ramp and hence increase the

normal force on the clutch. When differentiating in the opposite direction,

the rotation of the spyder gear will reduce the normal force on the clutch

pack. Hence, when the differential is differentiating, its characteristics will

be different for a left and a right turn. This asymmetry could potentially be

exploited by a race team to obtain different handling characteristics for left

and right turns. For example, when racing on a track with a right-hand hair

pin and several left-hand large radius turns, a slight advantage may be seen

if the differential were set up for a higher ramp coefficient for a left-hand

turn. This effect, however, will not be studies further,

32



2.4 Adjustment Mechanism

Since this differential was designed to allow for adjustment of its parameters

while installed in the vehicle, an external adjustment mechanism was devised.

Pairs of pins are used to select the number of number of clutch plates that

are active. These pins are notched on one side to allow the clutch plate to

pass freely when the notch faces inwards. The view on the left of figure 2.8

shows the pin engaged in a clutch plate. In this configuration, the clutch

plate is fixed relative to the housing and is hence transferring a torque from

the housing to the adjacent clutch plates through friction. The view on the

right of figure 2.8 shows the pin in the disengaged orientation. This allows

the clutch plate to move relative to the housing and hence this clutch plate

does not resist differentiation. Using two pair of these pins, two, four of six

friction surfaces can be selected. This allows the TBR 2 of the MK III to

take the discrete values of 2.0, 3.0 and 4.0. The two pairs of adjustment pins

are of different lengths. The shorter of the two selects the engagement of

one clutch plate, while the longer selects the engagement of two. The two

pins are shown in figure 2.9 and a table showing what configurations result

in each setting is given as table 2.2.

2The Torque Bias Ratio (TBR) is a measure of how much "lock" a differential has. It
is defined as the ratio of the two half-shaft torques when the differential is differentiating.
The TBR is always greater than unity.
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Figure 2.8: Adjustment pins in U of T differential

Figure 2.9: Adjustment pins, Mk II version
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Long pin
Notch inward Notch outward

Short pin Notch inward Setting 1 Setting 3
Notch outward Setting 2 Setting 3

Table 2.2: Adjustment Configurations
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Chapter 3

Detailed Mechanical Design

3.1 Approach

The mechanical design was preformed by first determining the required com-

ponents and the way that they fit together. This was done primarily in an

intuitive way. It was realized early on that the size of the gear set would dic-

tate the size of the whole unit. Therefore, the gears were designed first. The

ramp was designed next as it would affect the diameter of the differential.

The clutch pack was then designed, followed by the housing and all of the

remaining parts. The part of the differential are shown in figure 3.1 along

with their names.
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3.2 Gears

3.2.1 Spur Gear Terminology

While spur gears are not used in a typical salisbury differential, their geome-

try is somewhat simpler than that of bevel gears, which are typically used in

a salisbury differential. A brief study of spur gears is instructive since they

share the same basic concepts with bevel gears.

Figure 3.2: Figure showing main gear parameters. Figure taken from [2]

Pitch Circle: If the pair of gears were simple friction wheels (smooth

wheels that don’t slip relative to each other) and radius of the pitch circle is

equal to the radius of the friction wheels, the friction wheels and the gears

would provide the same speed ratio (ω1

ω2
).

Pitch Diameter: The diameter of the pitch circle, denoted Dp.

Diametral Pitch: Diametral pitch is a measure of how big the teeth are.
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Denoted DP or Pd, the diametral pitch is defined as N/Dp. Both gears in a

meshing pair must have the same DP in order to mesh . There are several

standard DP’s: 5, 6, 8, 12, etc. The unit of in−1 is generally assumed when

stating DP.

Pressure Angle: The angle that the tangent to the tooth profile at the

pitch circle makes with a radial line passing through the same point. Denoted

φ and specified in degrees. Both gears in mesh must have the same pressure

angle. Common pressure angles are 141
2
, 20 and 25.

Addendum: The portion of the tooth outside the pitch circle. Denoted a.

Typical values for addendum are 1/Pd.

Dedendum: The portion of the tooth inside the pitch circle. Denoted s.

Typical values for dedendum for 141
2

degree pressure angle teeth are 1.157/Pd.

Whole Depth: The entire depth of the tooth from tip to root (a + s).

Working Depth: The part of the tooth that contacts the mating tooth.

This value is always less than the whole depth, otherwise the tip of the tooth

would interfere with the root of the mate. Typically, the working depth is

twice the addendum.

Backlash: The clearance between two mating teeth, typically a few thou-

sandths of an inch. This clearance allows for misalignment of the gears

without binding and also allows for tooth profile error. Suggested backlash

values are given in AGMA B97 [9].

Center Distance or Mounting Distance: The distance apart that two gears

should be mounted to ensure proper meshing. This is equal to the sum of
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the pitch radii of the two mating gears.

Undercutting: If a gear has too few teeth, the profile must be modified to

prevent interference of the mating gear tip with the lower part of the gear’s

flank. Moderate undercutting will appear as an elongated tooth; in cases of

severe undercutting the root of the tooth will be narrower than the width at

the pitch line, resulting in severe strength reduction.

Hunting Ratio: If the number of teeth in a pair of gears, N1 and N2 do

not have any common divisors, a particular pair of teeth will contact each

other relatively infrequently [10]. When this is the case, the gear ratio is

said to be a hunting ratio. Using a hunting ratio tends to even out wear on

both gear teeth, especially when slight tooth-to-tooth profile variation exists.

The ratios 17:24, 13:19 and 21:12 are examples of hunting ratios, while 12:24,

14:21 and 19:38 are not.

For a full discussion of gear terminology, please refer to Cleghorn [8],

Shigley [11] or Oberg [2].

3.2.2 Bevel Gears

Bevel gears are similar to spur gears with the exception that bevel gears are

specified relative to a set of cones rather than circles (or cylinders) as in the

case of spur gears. Instead of a pitch circle, bevel gears have a pitch cone.

Also, addedendum and dedendum are usually specified as an angle, rather

than a linear dimension. The basic bevel gear measurements are shown in

figure 3.3. The drawing for the right side gear of the Mk III is given as
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appendix D and is representative of most bevel gear drawings.

Bevel gear teeth taper from the widest point at the outside edge of the

gear converging to a point at the center (the apex). The pitch is given in

terms of the tooth width at the outside of the gear.

Figure 3.3:

There are several bevel gear systems. The most common is the Gleason

system, which the U of T differential uses. There are a set of standard

pressure angles and diametral pitches within this system. Mainly, the system

determines how the gear is actually cut and how the teeth are referenced to

the gear blank. In the gleason system, the gear blank is located in the cutting

machine (called a generator) by referencing the face cone. The teeth are then

cut with respect to the face cone. Thus, if the gleason system is used, the

face cone must be accurate in terms of both angle and apex location.

The gleason system also incorporates a slight crown into the gear teeth
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along the width of the tooth to allow for some misalignment.

3.2.3 Gear Calculations

The gears were designed by using the calculations given in the AGMA stan-

dard for bevel gears, AGMA B97 [9]. Several design approaches were at-

tempted before, however. First, the design rules for bevel gears presented in

Shigley [11] were used. Shigley uses calculations very similar to those found

in AGMA B97. The bending and contact stress numbers (defined below) are

found using the factors J and I respectively – the so called geometry factors.

Shigley presents the geometry factors in the form of a series of graphs, while

AGMA B97 provides formulas for calculating these factors. These graphs

presented in Shigley do not give the geometry factors for gears as small as

those being designed, thus, this approach was abandon in favor of using

AGMA B97.

A calculation sheet with the AGMA B97 calculations was created in

MathCAD. This allowed for quick design iterations, as the stress number

is automatically calculated each time a parameter is changed. The switch

from the Shigley calculations to the AGMA calculations had the added ben-

efit that finding the geometry factors on the graph was no longer needed for

each iteration – the process became completely automated since the geom-

etry factors can be found analytically. The MathCAD calculation sheet for

the Mk III gears is given in Appendix E.
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3.2.4 Allowable Stress

The strength calculations in AGMA B97 are built around the concept of a

stress number. This number has the same units as stress, but not necessarily

the same magnitude as stress. For example, ABMA B97 lists the allowable

bending (tensile) stress number for Nitralloy 135M (a type of nitriding steel)

as 24.0 ksi, while the tensile strength is 115 ksi [12]. This discrepancy is due

to two factors. Stress is not numerically equal to stress number, and also the

AGMA specifications are extremely conservative – too conservative for the

design of a race car component where weight is of prime importance.

In order to arrive at a less conservative design, some commercially avail-

able differential gears were benchmarked. A test fixture was built to hold a

pinion and side gear from a Yamaha Kodiak ATV front differential and apply

a torque to the side gear. The torque applied to the side gear was increased

until fracture of a tooth occurred. The tooth geometry of the two gears were

measured and input into the AGMA B97 calculations. The bending stress

number was found at the failure load. The geometry of this pair of gears and

the stress number at failure are given in table 3.1.

Pinion Gear
Teeth 10 16

Pressure Angle 20 degrees 20 degrees
Diametral Pitch 7 7
Whole Depth 0.267 in 0.267 in
Failure Torque 2048 in-lb 3276 in-lb

Bending stress number at failure 109 ksi 164 ksi

Table 3.1: Data from benchmarked gears
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To relate these results to a material allowable, a material analysis was

preformed by fellow U of T Engineering student, Steven Choi. Using a

mass spectrograph, the material was determined to be AISI 8620 and mi-

cro hardness testing determined that they had been carburized to a depth of

approximately 0.040 inches. The material analysis is given in figure 3.2.

Element Weight %
Carbon 0.1582
Nickel 0.12

Molybdenum 0.15
Manganese 0.7
Chromium 1.0

Table 3.2: Material analysis of benchmarked gear

3.2.5 CAD of Bevel Gears

In order to produce drawings for manufacturing, it was decided to model

the bevel gears in CAD. Pro/Engineer was used. The modeling began by

constructing a mathematically defined surface based on the formulas given

in [13]. This surface defines the flank of one tooth. Figure 3.4 shows this

surface. The flank surface was then mirrored and patterned to define the

remaining tooth flanks. The material between the teeth was then cut out.

The final result is shown in figure 3.5.
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Figure 3.4: Construction surface for one gear tooth flank

Figure 3.5: Rendering of finished bevel gear model

3.2.6 Choice of Pitch, Addendum & Dedendum

The process of searching for a minimum mass configuration for the gear set

led to several general observations about the effect of various gear parameters.

Unlike most gearing applications, differential gears are statically loaded [9]

– when the two driven wheel speeds are equal, the gears of the differential

do not move relative to each other. The AGMA specifications indicate that

gears loaded statically should be designed assuming a contact ratio of 1.0, to
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allow for inaccuracies in the gear manufacturing that would cause only one

pair of teeth to be in contact at a time.

As the number of teeth of a dynamically loaded gear is increased while

keeping the pitch diameter constant, the contact ratio will increase to (ap-

proximately) offset the loss in strength due to the smaller teeth. However,

when the same is done for statically loaded gears, the contact ratio stays con-

stant at 1.0, so the reduction in tooth size means a reduction of the torque

capacity of the gear. Therefore, choosing larger (and fewer) teeth for a dif-

ferential gear set is preferential to choosing a large number of small teeth. Of

course, if the number of teeth is decreased too far, undercutting will result,

which has a far more decremental effect on gear strength.

It was found that stub teeth are preferential for differential gears because

the bending stress is reduced. Stub teeth have shorter a addendum and

dedendum than standard teeth, so the bending moment is reduced. Differen-

tial gears are typically designed for tip loading [9], so the reduction in whole

depth is especially important to reduce the stress. For this reason, the Mk

III gears were designed with stub teeth.

3.3 Ramp Design

In some salisbury differentials, the spyder pin bears directly on the ramp.

This was the configuration first investigated for the Mk I. Using Hertzian

contact theory, the required thickness of the ramp was very large. This thick
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ramp was causing the overall diameter of the differential to become excessive.

Treating the pin bearing on the ramp as an infinite cylinder bearing on an

infinite plate, the stress is given by Eq 3.1 taken from [14].

σ = 0.798

√
p

DCE

(3.1)

Where D is the diameter of the pin, CE is an elasticity parameter and

p is the load per unit width. As can be seen from this equation, a doubling

of the pin diameter and a halving of the contact width (doubling the load

per unit width) would not change the stress. Thus, increasing the diameter

of the pin will have an advantageous effect on the thickness of the ramp.

However, doing so will force the diameter of the spyder gear to increase to fit

this larger pin. To prevent this consequence, the decision was made to use a

hub on the back of the spyder gear to bear on the ramp (see figure 3.6). This

resulted in a significantly reduced overall diameter, but led to the "pinion

climbing" phenomenon described in section 2.3.4.

Figure 3.6: Spyder gear hub sitting in ramp
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3.4 Clutch Design

The first two parameters of the clutch chosen are the inner and outer diameter

of the clutch plates. These are chosen based on the gear and ramp diameter.

The inner diameter is based on the the diameter of the side gear hub and

the outer diameter is based on the size of the gear set and the ramps. The

inner and outer diameter of the clutch pack is important because it dictates

the force on the spline teeth that attach half of the plate to the side-gear and

the other half to the housing. Larger diameters result in lower forces on the

spline teeth.

Figure 3.7: Clutch plates of Mk II
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The torque on the clutch pack can be estimated through the equations

presented in section 2.3.1. The torque on each clutch plate can be found

from this by simply dividing by the number of clutch plates transmitting

the torque. This number can then be used in the design of the spline that

connects the inner clutch plates to the side gear and the outer clutch plates

to the housing. Since the geometry of the clutch plates was set by packag-

ing requirements, the two parameters that were changed during the design

process were the material and the thickness.

Figure 3.8: Testing of inner clutch spline

The Mk I used AISI 4130 steel clutch plates with a friction lining to

provide adequate friction with low wear rates. An FEA was performed to

determine the required thickness of the steel clutch plate backing. The FEA
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Figure 3.9: Failed inner clutch spline. Note that all teeth are buckled side-
ways.

predicted that 0.035 inch thickness would be sufficient for the inner clutch

plates and 0.063 inch for the outer clutch plates. In order to validate the

FEA, physical testing was preformed for both the inner and outer clutch

plate splines. A test spline was machined and mounted to a custom made

loading fixture. This fixture mounted to a standard tensile testing machine

and applied a torque to the splined connection with a moment arm. Testing

of the inner clutch spline (figure 3.8) revealed an unexpected failure mode:

buckling. The teeth of the spline buckled in torsion at a much lower load than

required. The failed teeth are shown in figure 3.9. Further testing indicated

that the clutch plate backing needed to be 0.063 inch thick instead of the

originally expected 0.035 inch.

FEA of the outer clutch plates was performed with a half-model with a

cyclic-symmetry constraint applied. A spline pin was modeled as well as the

clutch plate backing. The friction surface of the clutch plate was constrained

and the spline pin loaded. A contact region was defined between the two
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parts, and a implicit non-linear analysis was run with MSC.Nastran. The

stress results are shown in figure 3.10. Testing of the outer clutch plates

matched the FEA to within expected tolerance.

Figure 3.10: Stress results of the outer clutch spline FEA

During the design of the Mk II, David Boom, a fellow engineering student

at U of T suggested using bare aluminum clutch plates to save weight. He

investigated this by running the two test described above with aluminum

clutch plates to obtain the required thickness. Since aluminum tends to

exhibit high wear rates when run against another aluminum part [15], he

also ran a wear test. This testing indicated that the clutch pack would wear

less than 0.010 inches over one season – an acceptable wear rate. Changing

material from steel to aluminum and removing the friction lining reduced the

weight of the differential by 0.60 lb.
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3.5 Housing Design

The differential housing preforms several function in the differential. First,

it transfers torque from the sprocket to the ramp will allowing the ramp to

slide along the axis of the differential. Secondly, it must react the separating

forces from the gears1 Third, it must transfer torque to the outer clutch

plates. Fourth, it must provide a seal to keep the lubricating oil in. Finally,

it must allow installation of all the components of the differential.

To accomplish the last requirement – that the housing allow for instal-

lation of all components of the differential – a two piece design was chosen

(see figure 3.11).

Figure 3.11: Two piece differential housing

The mechanical design of the housing was performed in several stages.
1Any gear in a mesh with a pressure angle greater than zero will try to separate from

its mate. For bevel gears, the separating force is given by Fs = T
Cm

tanφ where T is the
torque applied to the gear of interest, φ is the pressure angle and Cm is the mean pitch
cone radius.
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First, the basic geometry was identified and modeled in CAD. Several pa-

rameters that could be changed without affecting functionality were identi-

fied. These included wall thickness of the housing, location of the screws

that fasten the left and right halves, joining flange thickness and several oth-

ers. The main parameters that were varied are shown in figure 3.12 These

parameters were optimized to give minimum weight with adequate strength

through finite element analysis.

53



F
ig

ur
e

3.
12

:
D

iff
er

en
ti
al

ho
us

in
g

pa
ra

m
et

er
s

54



3.5.1 Housing FEA

The housing was analyzed through a series of FEAs. The wall thickness

was chosen by running a set of localized FEAs. A section of the differential

hosing was modeled along with the spline pin that affixes the ramp to the

housing. A tangential load was applied to the spline pin and one end of the

differential housing constrained. Both the pin and the slot that if fits into

were defined as deformable contact regions for an implicit non-linear analysis

in MSC.Nastran (solution sequence 600 was used). The von Mises stress

within the differential housing was observed and the analysis repeated for

several values of wall thickness. Representative results are shown in figure

3.13. The minimum wall thickness that met the maximum allowable von

Mises stress was selected.

Figure 3.13: Wall thickness FEA results (stress in psi)

To optimize the other design parameters, a finite element analysis was

preformed on the entire differential housing. All of the internal and external

loads were applied to the housing. A contact region was defined between
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the two halves of the differential and the preload and elasticity of the twelve

bolts joining the two halves modeled. The design parameters were adjusted

to minimize the mass and keep the von Mises stress within allowable limits.

Figures 3.14 and 3.15 show the von Mises stress results of this FEA for the

Mk II.

Figure 3.14: Stress results of housing FEA, left side (psi)

Figure 3.15: Stress results of housing FEA, right side (psi)

3.5.2 Seal Design

Ensuring that the differential will seal the lubricating oil inside is a critical

aspect of the design. A leak can have two disastrous consequences: if the oil
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leaks out of the differential, the gears will not be properly lubricated and are

more likely to suffer a contact failure such as scuffing or pitting 2; also, a leak

seen by a track martial during competition can result in disqualification of

the car. There are four places in the housing that can potentially leak: the

stub shafts, the adjustment pins, the joint between the right and left housing

and the drain plug.

Both the stub shafts and the adjustment pins are sealed with o-rings. The

glands are designed according to the design rules presented in [11]. These

seals have not presented a significant problem.

The drain plug allows the differential to be filled and drained of oil. The

plug itself has an NPT tapered thread and is thus self-sealing against the

tapered female thread in the differential housing. It has not posed significant

problems,

The joint between the left and right side of the differential housing has

been a source of issues. The Mk I was sealed here with RTV silicone gasket

material. An investigation into this leak led to the conclusion that the joint

was flexible enough to allow certain parts to separate under the separating

load from the gears. This separation was allowing oil to pass through the

crack formed. Consequently, the Mk II and Mk III housings were designed to

prevent this. The mating flange was made thicker and the bolt pattern op-
2Scuffing is a failure caused by two gears micro-welding together while rotating. These

micro-welds tear and leave a damaged surface. Pitting is caused by excessive sub-surface
shear stress. This causes a number of cracks join below the surface to free the material
above, leaving a small pit.
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timized to assure that a minimum contact pressure was maintained between

the two parts over the entire surface. This was analyzed by running a finite

element analysis that included all of the internal loads in the differential, the

preload and stiffness of the bolts and the contact between the two halves

of the differential. Figure 3.16 shows the result of this FEA for the Mk II

geometry. The silicone gasket was also replaced by a rubber-infused paper

gasket.

Figure 3.16: Contact pressure between two halves of differential housing.
Red indicates minimum of 5 psi contact pressure.

3.6 Differential Manufacture

All three versions of the differential were manufactured in much the same

way. The housings were machined by hand by members of the U of T FSAE

team as were the adjustment pins, the ramps and the spyder pin. The clutch

plates were cut from sheet metal using a water jet process by Profile Water

jet. The gears were cut using a Gleason bevel gear generator by True Gear

and Spline. The Mk I gears were designed to be nitrided, and were hence
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Mk I 5.91 lb
Mk II 4.67 lb
Mk III 5.25 lb

Table 3.3: Weight of each iteration of the U of T differential

Figure 3.17: Outer dimension of the Mk I differential

hard machined and then nitrided. The Mk II and Mk III gears were designed

to be carburized and were machined in the soft state prior to carburizing to

a depth of 0.020 inch.

3.7 Mechanical Performance

Of the three iterations designed, two have been built and tested. Table 3.3

shows a comparison of the weights of the three units and figures 3.17 - 3.19

show the exterior dimensions of the three. The Mk I proved to be a relatively

robust unit but had two failings. First it was quite heavy and second, it had

a constant, slow oil leak from between the two halves of the housing.

The Mk II was redesigned with a more rigid mating flange between the
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Figure 3.18: Outer dimension of the Mk II differential

Figure 3.19: Outer dimension of the Mk III differential

60



left and right sides. This solved the oil leak problem. Many of the other com-

ponents were redesigned as well to reduce the overall weight, which dropped

by 21% over the Mk I. The Mk II suffered one issue, however. The gears

experienced a fatigue failure. The spyder gear teeth fractured several times

throughout the season. Figure 3.20 shows a pair of failed spyder gears. Upon

investigation of this issue, it was discovered that the gear manufacturer had

not cut the teeth according to the drawing. The drawings specified that the

gears were to have 250 pressure angle teeth, but the gears were manufactured

with a 200 pressure angle. This manufacturing error meant that the teeth

were thinner at the base and hence had higher bending stress. Table 3.7

shows the stress number for the Mk II gears as they were designed and as

they were built. The out-of-spec pressure angle had a considerable effect on

the bending stress number.

The Mk III addresses the gear fatigue issue seen in the Mk II. The gears

were redesigned as 200 pressure angle gears since the manufacturer chosen

does not have tooling to cut 250 pressure angle teeth. To reduce the bending

stress, the number of teeth on the side gear was increased by two and the

number of teeth on the spyder gear was increased by one. As can be seen in

table 3.7, the stress numbers have been reduced significantly over those seen

in the Mk II, as it was manufactured.
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Figure 3.20: Failed Mk II spyder gears

Bending Stress Number Contact stress number
Gear Pinion Contact

Mk I 64 ksi 49 ksi 372 ksi
Mk II (design) 107 ksi 94.5 ksi 268 ksi
Mk II (mfg’d) 133 ksi 115 ksi 247 ksi

Mk III 139 ksi 104 ksi 246 ksi

Table 3.4: Comparison of gear stress number
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Chapter 4

Vehicle Dynamics

An important metric in vehicle dynamics is the yaw moment, N . This is

the moment that turns the car either in or out of a turn. A differential,

by applying different torques to the left and right wheel, can produce a yaw

moment. As will be seen, this can have a large effect on the handling of a car.

The differential can either produce an oversteer moment1 or an understeer

moment2.

Two approaches are used here to study the stability and control char-

acteristics of a vehicle. First, a linear analysis is performed, followed by a

non-linear vehicle dynamics analysis. Non-linear analysis tends to be more

complete, but it is often more difficult to identify the effect that each param-

eter of the vehicle has on the handling.
1An oversteer moment tends to turn the car into the turn. For a right-hand turn, which

is assumed in this chapter, oversteer moments are positive.
2Understeer moments turn the car out of a turn. For right-hand turns, an understeer

moment is negative
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4.1 Linear Analysis

There are two assumptions made in non-linear vehicle dynamics analysis.

First, a linear tire model is assumed. This reasonably close to reality at

low force levels. Referring to figure 1.2, the tire lateral force curves are

reasonably close to linear at low force levels. The same is true for longitudinal

force. The second assumption made is that the various effects that contribute

to handling can be simply superimposed and thus do not interact. Again,

this assumption is usually reasonably good for low force levels. In addition

to the two assumptions stated above, there are many effects that cannot

be described by a linear model. These include camber change with roll,

compliance effects and the like, but once again, these effects are usually

small at low force levels.

A salisbury differential is inherently non-linear, operating in two distinct

ranges. In the first operating range, the torque required to overcome the

friction in the clutch pack, Tmax
c is greater than the difference in left/right

drive shaft torque. In this case, the differential is effectively locked. The

terms locked and spool will be used interchangeably to refer to this operating

range. The second case is when there is a sufficient difference in torque

between the left and right drive shafts to cause the clutch to slip. In this

case, the difference between drive shaft torques will be exactly Tmax
c . This

operating range occurs when the differential is differentiating, and will be

referred to as such. In order to derive a linear model of this inherently non-
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Figure 4.1: Yaw moment produced by a differential and a spool. Greed dots
indicate transition points between locked and differentiating operation.

linear device, the two operating ranges will be studied separately.

When the differential is locked, the yaw moment produced is given by Eq

4.1 and when the differential is differentiating, the yaw moment becomes Eq

4.2. Both of these expressions are derived in Appendix C. The yaw moment

for both cases is plotted against lateral force, Y , for both cases in figure 4.1.

N spool =

[
2V ρhY

r
− t2 (Fz0 + hX/ (2w))

]
r (X + 2Cx (Fz0 + hX/ (2w)))

2V (Fz0 + hX/ (2w)) − ρhY
−2CxρhY

(4.1)

Ndiff =
−tTc

Rt

=
−t (CXRt + B)

Rt

(4.2)
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It is interesting to note that, at least based on this linear model, a salis-

bury differential only provides yaw-damping when operating as a spool; when

it is differentiating, the yaw-moment is independent of yaw-rate.

Since tire radius is assumed constant in this model, the yaw moment pro-

duced by the differential is proportional to the difference in left and right

drive shaft torque. Therefore, the limiting difference in left/right torque,

Tmax
c can be translated into a limiting yaw moment. This limiting yaw mo-

ment defines the point where the differential will transition from acting as a

spool to differentiating. These transition points occur when N spool = Ndiff

and are shown as in figure 4.1. At a given in-line force, X, the differential will

impart a yaw moment that remains constant as lateral force is increased until

a critical lateral acceleration, at which point, the differential will transition

from differentiating and become locked. The yaw moment will increase (be-

come less negative) and will actually impart an turn-in (oversteer) moment

at a sufficiently high lateral force.

The increasing yaw moment with increasing lateral force for the case of

a spool is due to lateral load transfer. As the outside wheel becomes more

highly loaded and the inside less loaded, the outside tire has more tractive

capacity. The yaw moment produced by the increased in-line force on the

outside wheel becomes sufficient at a certain point to overcome the drag from

the inside wheel caused by its lower slip ratio.

The critical lateral force at which the differential will transition from

differentiating to being locked is shown in figure 4.2. As the in-line force is
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Figure 4.2: Critical lateral force to lock a salisbury differential. Various
values of C shown. Preload kept constant at 4.11ft · lb.

increased, the differential will become locked at a decreasing lateral force.

This effect is increased as the C value of the differential is increased.

4.2 Non-linear Analysis

In order to remove some of the assumptions made in the linear model, a

non-linear model was created. This model uses a non-linear tire model based

on the Pacejka ’96 model. Lateral and longitudinal force data was obtained

through laboratory testing at Calspan’s TIRF facility as part of the FSAE

Tire Testing Consortium (TTC). The raw data was fit for the Pacejka ’96

model by Stackpole Engineering Services. For more details about the model,

the reader is referred to [16] and [5].
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The model outputs applied torque, Tapp and the yaw moment created by

the differential, Ndiff by sweeping through several lateral acceleration steps

and through a parameter termed axle-slip, which is is defined much like slip

ratio, but uses the differential housing speed, Ω, rather than wheel speed

and uses the unloaded tire radius, Rt instead of the loaded tire radius. It is

defined as:

AS =
ΩRt

V
− 1 (4.3)

Several simplifying assumptions are made in the model which will affect

its fidelity. First, the suspension kinematics are ignored. Constant camber

and toe angle are assumed, as well as a constant motion ratio between wheel

and spring. Also, geometric weight transfer is neglected3. These two simpli-

fications affect the vertical loads on the tires and the angles that they are

presented to the road. They will affect the handling of the car in the simu-

lation but are not expected to affect the trends caused by the differential.

4.2.1 Observations from the Non-Linear Model

Figure 4.3 shows the results of the non-linear vehicle dynamics model. The

curves for each setting exhibit slope discontinuity. This occurs at the point
3Geometric weight transfer arises from the suspension kinematics. The roll moment

caused by the lateral acceleration, applied at the vehicle CG is reacted both through
vertical loads through the suspension springs, but also directly through the suspension
linkage. The component that is reacted through the suspension linkage is termed geometric
weight transfer and the component reacted through the springs is elastic weight transfer.
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Figure 4.3: Non-linear model output: Yaw moment versus torque for various
lateral accelerations and differential settings

where the differential transitions from differentiating to acting as a spool.

Similar trends are observed with the non-linear model and the linear model.

In the differentiating operating range, as torque (or in-line force) is increased,

the yaw moment becomes more negative. As the differential transitions to

spool operation, the yaw moment begins to increase and becomes positive at

some point.

Also visible in figure 4.3 is the relative magnitudes of the yaw moments

produced by the three differential settings. Setting 3 (the high-lock setting)

produces the largest understeer moment, but also produces the highest over-

steer moment. This large range would allow the driver to "steer with the

throttle" – to alter the heading of the car by changing the throttle appli-
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cation. Also, the high-lock setting allows greater amounts of torque to be

applied to the wheels: the same conclusion made in section 2.3.2.

The two models, however, do not match in numeric values. For exam-

ple, comparing the transition point to locked operation for setting 2 (which

corresponds to C = 0.48) at a lateral acceleration of 0.9 g: the non-linear

model predicts that this transition will occur at 182ft · · · lb. Given the tire

radius and vehicle mass, this corresponds to X = 218lb for Y = 567lb. The

linear model predicts that this will occur at approximately X = 1200lb. Also,

the magnitudes of yaw-moment produced do not match. For example, the

non-linear model predicts that the yaw-moment can range from −650ft · lb to

650ft·lb, while the linear model predicts a range of −1200ft · · · lb to 200ft·lb

for the same torque and lateral acceleration range.

Since neither model has been fully validated through testing, neither

model can be said for sure to be more accurate than the other. The ba-

sic trends in each model, however, agree.

4.3 Track Data Analysis

In order to qualitatively validate the above models, on-track testing was

performed. A track was set up and the 2006 U of T FSAE car, fitted with

the Mk I differential drove the track. Many laps (10-20) were run for each of

the three settings of the differential. The fastest lap for each setting is used

in the analysis. A map of the track, broken into ten sectors, is given in figure
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Figure 4.4: Map of track used in testing with sectors identified

4.4.

At the time of testing, some of the sensors required for a full quantitative

model validation were not available. Such a validation would, at a minimum,

require lateral and longitudinal accelerometers, a gyro to measure yaw-rate, a

steering position sensor and a body slip angle sensor. Since a body slip angle

sensor and a gyro were not available, a qualitative validation was performed

instead. This, of course, can only validate the trends seen, and not numbers.

To asses the effects of the differential settings, in-line acceleration traces

for each lap are compared, along with driver comments for the three settings.

Figure 4.5 shows the in-line acceleration versus track position for the hairpin

(sector 3). The maroon trace is the high-lock setting, the amber trace is the

medium setting and the green trace is the low-lock setting. Taking note of
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Figure 4.5: In-line acceleration, sector 3

where these three traces cross zero longitudinal acceleration, from braking

(negative) to acceleration (positive), it becomes clear that the high-lock set-

ting prevents the driver from beginning to accelerate as early as the other

settings. This can be explained by the high turn-in yaw moment that the dif-

ferential creates at the high-lock setting at higher lateral accelerations. The

driver must reduce the lateral acceleration before beginning to accelerate in

order to prevent the car from spinning out. For this tight corner, the driver

is able to begin to accelerate much earlier with the low-lock setting.

Figure 4.6 shows the in-line acceleration traces for sector 10: a large

radius turn. Here, the trend is opposite that seen in sector 3. Here, the

driver appears to be able to accelerate earlier because, as predicted in section

72



Figure 4.6: In-line acceleration, sector 10

2.3.2, the high-lock differential is able to accelerate the car while there is still

significant lateral load transfer. Since this is a relatively large radius corner,

the yaw moment caused by the differential is relatively low.

The general consensus among the various drivers who have driven multiple

differential settings is that the car is loose (oversteer) when on throttle when

the differential is at the higher lock settings. The more experience drivers

tend to prefer the differential to be set at higher settings than less experienced

drivers, presumably because the higher-lock settings are harder to drive, but

allow the driver to "steer with the throttle" – to adjust the heading of the

car by applying more or less throttle.
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Chapter 5

Conclusion

It has been found, both through simulation and track testing, that the differ-

ential can have a large effect on the performance of a race car. It was found

that high-lock differentials allow for greater in-line acceleration but when

power is applied during a turn, an oversteer yaw moment can be generated.

Track testing suggests that these two effects have opposite performance ef-

fects for large radius and tight turns. For large radius turns, the gains in

longitudinal acceleration for a high-lock differential are of greater benefit

than the large yaw moment is a detriment. However, for tight turns, the

large yaw moment created by the differential forces the driver to accelerate

out of the turn much later in order to prevent spinning-out.

Despite a few mechanical failures of the first two iterations of the differ-

ential designed for the U of T Formula SAE car, the design is converging

to a reliable one. Finite element analysis, hand calculations and physical
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testing were used for the design, which is being constantly refined based on

its mechanical performance.

The differential designed is a salisbury differential with an adjustable

clutch pack. This adjustability makes for an excellent research tool, but the

benefits go far beyond this. The easy adjustability means that it is feasible

to make adjustments to the differential for different tracks or for different

events of the Formula SAE competition. In fact, the U of T FSAE team has

been doing this with definite gains.
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Appendix A

Derivation of Salisbury Clutch

Characteristics

This appendix shows the variation of Tc with applied torque, T , for a salisbury

differential. Refer to figure 2.2 for some of the force definitions.

Ft = T/rr (A.1)

Where rr is the mean distance from the center of the differential to the

ramp.

Fa =
Ft

tan α
=

T

rr tan α
(A.2)

Where α is the ramp angle.
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Tmax
c = Ncµcrc (Fa + Fpre) (A.3)

Where Nc is the number of friction surfaces, µc is the coefficient of friction

of the clutch plates, rc is the mean radius of the clutch plates and Fpre is the

clutch preload force.

Tmax
c = Ncµcrc

(
T

rr tan α
+ Fpre

)
(A.4)

Note that the force applied to the ramp is related to the torque applied

to the gears, so this will be less than the torque applied to the differential,

Tapp, by the value of the clutch torque, Tc. With this in mind, the clutch

torque, as a function of applied torque is:

Tmax
c =

CATapp + NcrcµcFpre

1 + CA

(A.5)

Where

CA =
Ncrcµc

rr tan α
(A.6)

The mean friction radius, rc is given by [17] as:

rc =
1

3

d3
o − d3

i

d2
o − d2

i

(A.7)

Where do and di are the outer diameter and inner diameter of the friction

surfaces on the clutch plates respectively.
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Appendix B

Equations for the Torque Path

This derivation shows the torque seen by each component of the differential.

The left and right drive shaft torques, Tl and Tr are a function of the applied

torque, Tapp and the clutch torque, Tc.

Tapp = Tg + Tc = Tl + Tr (B.1)

Tlg = Trg =
Tg

2
(B.2)

Tr = Trg + Tc =
Tg

2
+ Tc (B.3)

Tl = Tapp −
Tg

2
− Tc (B.4)
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Tl = Tapp −
Tapp − Tc

2
− Tc (B.5)

Tl =
Tapp

2
− Tc

2
(B.6)

Tr = Tapp − Tl = Tapp −
Tapp

2
+

Tc

2
(B.7)

|∆T | = |Tr − Tl| = Tc (B.8)

The torque bias ratio is the ratio of the higher:lower drive shaft torque.

It is:

TBR =
Tr

Tl

=
Tapp/2 + Tc/2

Tapp/2 − Tc/2
(B.9)

TBR =
Tapp + Tc

Tapp − Tc

(B.10)
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Appendix C

Derivation of Linear Vehicle

Model

The yaw moment due to longitudinal force from the driven wheels is:

N spool = t(Fxl − Fxr) (C.1)

Assuming a linear tire model:

Fx = CxFzκ (C.2)

Combining these equations:

N spool = Cxt

[
Fzl

(
ΩRt

r (R + t/2)
− 1

)
− Fzr

(
rΩRt

R − t/2
− 1

)]
(C.3)
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The vertical load on the driven tires are not independent. We’ll define

the constant Fz0 as the static load on each driven tire (assumed equal) and

∆Fz as the weight transfer.

Fzl = Fz0 + ∆F lat
z + ∆F long

z (C.4)

Fzr = Fz0 − ∆F lat
z + ∆F long

z (C.5)

Of course, ∆F lat
z and ∆F long

z are not independent, but are dependent on

the lateral and longitudinal force on the vehicle, Y and X; the height of the

center of gravity, h; the fraction of anti-roll torque on the driven axle, ρ; the

track, t; and the wheelbase, w.

∆F lat
z =

ρhY

t
(C.6)

∆F long
z =

hX

2w
(C.7)

Combining these and simplifying:

N spool =
CxΩRt

r (R2 − t2/4)

[
2RρhY − t2

(
Fz0 +

hX

2w

)]
− 2CxρhY (C.8)

The longitudinal force is:
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X = Fxl + Fxr (C.9)

Xspool =
CxΩRt

r (R2 − t2/4)
[2R (Fz0 + hX/ (2w)) − ρhY ] − 2Cx (Fz0 + hX/ (2w))

(C.10)

Solving for Ω and back-substituting, the equation for yaw moment of the

spool is:

N spool =
[
2RρhY − t2 (Fz0 + hX/ (2w))

] X + 2Cx (Fz0 + hX/ (2w))

2R (Fz0 + hX/ (2w)) − ρhY
−2CxρhY

(C.11)

It appears that yaw-rate, r, does not appear in the expression for yaw

moment. However, if turn radius, R, is replaced by V/r, then yaw rate now

appears again. After this substitution, the yaw moment becomes:

N spool =

[
2V ρhY

r
− t2 (Fz0 + hX/ (2w))

]
r (X + 2Cx (Fz0 + hX/ (2w)))

2V (Fz0 + hX/ (2w)) − ρhY
−2CxρhY

(C.12)

The stability and coupling derivatives for the spool are:

∂N spool

∂r
=

t2

2

(Xw + 2CxFz0w + CxhX) (2Fz0w + hX)

−2V Fz0w2 − V hXw + ρhY w2
(C.13)
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∂N spool

∂Y
=

X + 2Cx

(
Fz0 + hX

2w

)
2V

(
Fz0 + hX

2w

)
− ρhY

{
2V ρh + rρh

2V ρhY
r

− t2
(
Fz0 + hX

2w

)
2V

(
Fz0 + hX

2w

)
− ρhY

}
−2Cxρh

(C.14)

If the differential clutch pack is taken into consideration, there is a limit

to the yaw moment generated. When the differential is differentiating, the

difference in right and left wheel torques is defined by the differential parame-

ters and the applied torque (which is proportional to the in-line acceleration).

The torque differential is:

∆T = Tc = CTapp + B = (CXRt + B) (C.15)

Therefore, the yaw moment generated is:

Ndiff =
−tTc

Rt

=
−t (CXRt + B)

Rt

(C.16)

The negative sign in the above equation arises from the definition that

a positive yaw moment as a torque that tends to turn the car to the right.

Since, at least at low accelerations, the outside wheel spins faster than the

inside, the torque transfer from the friction of the clutch plates will be from

the outside to the inside, resulting in a negative yaw moment in the case of

a right hand turn.

The yaw moment gradients are:
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∂Ndiff

∂r
= 0 (C.17)

∂Ndiff

∂X
= −tCR2

t (C.18)

∂Ndiff

∂Y
= 0 (C.19)

The difference in left/right torque is related to the yaw moment by the

tire radius and track (assuming constant tire radius and track). Therefore,

if the yaw moment that a salisbury differential produces cannot exceed (in

magnitude) the yaw moment given by Eq C.16. The point where this hap-

pens, the clutch will be at a state of impending slip. This will be termed the

critical point for the differential and is signified by N spool = Ndiff .
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Appendix D

Sample Gear Drawing for the Mk

III
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Appendix E

Bevel Gear Calculations
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Calculation Sheet

Title: Differential Gear Calculations 
Calculation By: Stefan Kloppenborg 
Vehicle Section: Drivetrain Sub Assembly: 2008 Differential 
Component: Gear Set Part Number:  
Date Created: 23-MAY-2006 Date Modified: 9-Sept-2007 
Calculation Rev: A Part Rev: NR 
 
All of the below calculatios are based on AGMA Standard 2003 B97 and are only valid for
appplications with very low pitch line speeds, like an automotive differential. Furthermore, it is only
valid for gears without profile shift.

Functional Parameters

Tapp 11000in lbf⋅:= Torque Applied to the differential casing

Np 2:= The number of spyder gears used

Gear Parameters

Pd 8 in 1−
⋅:= Diametral Pitch of both members

Zg 18:= Number of teeth, side gear

Zp 13:= Number of teeth, spyder gear

φ 20deg:= Pressure Angle

FG .475in:= Gear Facewidth, must be no smaller than Fmax

FP .475in:= Pinion Facewidth, must not be smaller than Fmax

Facewidth: use the smaller of the above two
F .475in:=

Backlash in gear mesh
backlash .004in:=

rTP .045in:= Tool Edge Radius for Pinion

rTG .045in:= Tool Edge Radius for Gear

Material Properties

Eg 29 106psi⋅:= Elastic Modulus, side gear

Ep 29 106psi⋅:= Elastic Modulus, spyder gear

νg .32:= Poisson's Ratio, side gear

C:\FSAE\2008_calcs\drivetrain-diff-
gears.xmcd

Last Saved:3/1/2008
Printed:3/1/2008



νp .32:= Poison's Ratio, spyder gear

Hg 60:= HRC harness of gear

Hp 60:= HRC hardness of spyder

Functional Relations

Tg
Tapp
2 Np⋅

:= Side gear torque at each gear mesh Tg 2.75 103
× in lbf⋅=

Tp Tg
Zp
Zg
⋅:= Pinion torque at each gear mesh Tp 1.986 103

× in lbf⋅=

Gear Relations

Dg
Zg
Pd

:= Pitch Diameter, gear Dg 2.25 in=

Dp
Zp
Pd

:= Pitch Diameter, pinion Dp 1.625 in=

Γp atan
Zp
Zg

⎛
⎜
⎝

⎞
⎟
⎠

:= Pitch Cone Angle, spyder gear Γp 35.838 deg=

Γg
π

2
Γp−:= Pitch Cone Angle, side gear Γg 54.162 deg=

C
Dg

2 sin Γg( )⋅
:= Pitch Cone Radius C 1.388 in=

Fmax
C
3

C
3

10
Pd

<if

10
Pd

otherwise

:= Largest Permissible Face Width
Fmax 0.463 in=

Addendum and Dedendum Dedendum
Addednum

S1
.540
Pd

.450

Pd
Zg cos Γp( )⋅

Zp cos Γg( )⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅

+:= S1 0.097 in= b1
2.188

Pd
S1−:= b1 0.177 in=

C:\FSAE\2008_calcs\drivetrain-diff-
gears.xmcd

Last Saved:3/1/2008
Printed:3/1/2008



S2
2
Pd

S1−:= S2 0.153 in= b2
2.188

Pd
S2−:= b2 0.12 in=

Sg
1.8

2.118
S1:= Sp

1.8
2.188

S2:= bg
1.8

2.118
b1:= bp

1.8
2.118

b2:=

Og Dg 2 Sg⋅ cos Γg( )⋅+:= Outside diameter, side gear Og 2.346 in=

Op Dp 2 Sp⋅ cos Γp( )⋅+:= Outside diameter, spyder gear Op 1.829 in=

Pitting Formulae

Cm C .5 F⋅−:= Mean Pitch Cone Distance Cm 1.15 in=

k
Zg Zp−

3.2 Zg⋅ 4.0 Zp⋅+
:= Location Constant k 0.046=

Pm
C

Cm
Pd⋅:= Mean Transverse Diametral Pitch Pm 9.652 in 1−

=

p
π

Pd
:= Outer Transverse Circular Pitch p 0.393 in=

pN
Cm
C

p⋅ cos φ( )⋅:= Mean Normal Base Pitch pN 0.306 in=

pn
pN

cos φ( ):= Mean Normal Circular Pitch pn 0.325 in=

p2
pn

cos φ( ) tan φ( )2⋅

:= p2 2.615 in=

r
Dp

2 cos Γp( )⋅

Cm
C

⋅:= Mean Transverse Pinion Pitch Radius r 0.831 in=

R
Dg

2 cos Γg( )⋅

Cm
C

⋅:= Mean Transverse Gear Pitch Radius R 1.593 in=

rbN r cos φ( )⋅:= Mean Normal Pinion Base Radius rbN 0.781 in=

RbN R cos φ( )⋅:= Mean Normal Gear Base Radius RbN 1.497 in=

roN r Sp+ .5 F⋅
Sp
C

⋅−:= Mean Normal Pinion Outside Radius roN 0.935 in=

RoN R Sg+ .5 F⋅
Sg
C

⋅−:= Mean Normal Gear Outside Radius RoN 1.661 in=
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Zp1 roN
2 rbN

2
− r sin φ( )⋅−:= Zp1 0.231 in=

Zg1 RoN
2 RbN

2
− R sin φ( )⋅−:= Zg1 0.175 in=

ZN Zp1 Zg1+:= Length of Action in Mean Normal Section ZN 0.406 in=

Ψb acos cos φ( ) tan φ( )⋅( ):= Mean base spiral angle Ψb 70 deg=

η ZN
2 cos Ψb( )4⋅ F2 sin Ψb( )2⋅+:= η 0.449 in=

Lowest Point of single tooth contact on
the pinion (measurement from mid-point
of the length of action)

fI
ZN
2

pN−:= fI 0.103− in=

ηI η
2

4 fI
2

⋅−:=
ηI 0.399 in=

zo 0in:= zo 0 in=

mo
ZN
p2

:= Transverse Contact Ratio mo 0.155=

ρ1
r sin φ( )⋅

cos Ψb( )2
zo+:=

ρ2
R sin φ( )⋅

cos Ψb( )2
zo−:=

ρo
ρ1 ρ2⋅

ρ1 ρ2+
:= Relative Radius of Profile Curvature ρo 1.596 in=

Ci 1:= Inertia Factor for I (use 1 for low pitch line speed)

ζ1 ko( ) ηI
2

4 ko⋅ pN⋅ ko pN⋅ 2 fI⋅+( )⋅−⎡
⎣

⎤
⎦

3
:=

ζ2 ko( ) ηI
2

4 ko⋅ pN⋅ ko pN⋅ 2 fI⋅−( )⋅−⎡
⎣

⎤
⎦

3
:=

ηIpcube ηI
3

1

10

ko

ζ1 ko( ) ζ1 ko( ) 0>if

0 otherwise

⎛
⎜
⎝

⎞
⎟
⎠

∑
=

+

1

10

ko

ζ2 ko( ) ζ2 ko( ) 0>if

0 otherwise

⎛
⎜
⎝

⎞
⎟
⎠

∑
=

+:=

mNI
ηI

3

ηIpcube
:= Load Sharing Ratio mNI 0.901=

sl
F ZN⋅ ηI⋅ cos Ψb( )⋅

η
2

:= Length of Line of Action sl 0.131 in=
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tP
p
2

backlash
2

−:= Tooth Thickness, pinion tP 0.194 in=

tG tP:= Tooth Thickness, gear
tG 0.194 in=

bP bg .5 F⋅
bg
C

⋅−:= bP 0.124 in=Mean Gear Dedendum

bG bP:= bG 0.124 in=Mean Pinion Dedendum

rfP
bP rTP−( )2

r bP+ rTP−
rTP+:= Fillet Radius at root of pinion tooth rfP 0.052 in=

rfG
bG rTG−( )2

R bG+ rTG−
rTG+:= Fillet Radius at root of gear tooth rfG 0.049 in=

Formulae for Bending

fJ
η

2
:= Point of Load Application for Static Loading fJ 0.224 in=

ηJ η
2

4 fJ
2

⋅−:= ηJ 0 in=

Point of load application for maximum
bending stress.p3

ZN
2

ZN
2 fJ⋅

η
2

+:= p3 0.387 in=

xo
F ηJ⋅ k⋅ ZN⋅

η
2

:= xo 0 in=

φLP atan
p3 r R+( ) sin φ( )⋅+ RoN

2 RbN
2

−−

rbN

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

:= φLP 32.413 deg=

φLG atan
p3 r R+( ) sin φ( )⋅+ roN

2 rbN
2

−−

RbN

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

:= φLG 25.095 deg=

Contact Stresses
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Cp
1

π
1 νp

2
−

Ep

1 νg
2

−

Eg
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:=
Elastic coefficient Cp 2.268 103

× psi=

Cs .125
F
in
⋅ .4375+ F 0.5in>if

0.5 otherwise

:= Size Factor Cs 0.5=

Overload Factor, taken as one because applied
torque in this sheet is maximum torqueKo 1.0:=

Kv 1.05:= See section 10 of AGMA 2003-B97

Km 1.1 .0036
F
in

⎛⎜
⎝

⎞⎟
⎠

2
⋅+:= Load distribution Factor for one member straddle

mounted. This is only valid for crowned teeth.

Cxc 1.5:= Crowning factor (for properly crowned teeth)

Determination of the Geometry Factor For Durability

I
sl ρo⋅ cos φ( )⋅

F Dp⋅ Ci⋅ mNI⋅

Pd
Pm
⋅:=

Result I 0.234=

Contact Stress Result

Sc Cp
2 Tp⋅

F Dp
2

⋅ I⋅
Ko⋅ Kv⋅ Km⋅ Cs⋅ Cxc⋅⋅:=

Sc 2.458 105
× psi= Contact Stress Number

Related Gear Formulae

θhP .5
tP
r

⋅ tan φLP( ) φLP−( )− tan φ( ) φ−( )+:=
θhP 3.59 deg=

θhG
.5 tG⋅

R
tan φLG( ) φLG−( )− tan φ( ) φ−( )+:= θhG 2.612 deg=

φhP φLP θhP−:=
φhG φLG θhG−:=

ΔrN
rbN

cos φhP( )
r−:= ΔRN

RbN
cos φhG( )

R−:=
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rt r
Cm xo+

Cm

⎛
⎜
⎝

⎞
⎟
⎠

⋅ ΔrN+:= Mean Transverse Radius of Pinion to
Load Application

rt 0.891 in=

Rt R
Cm xo+

Cm

⎛
⎜
⎝

⎞
⎟
⎠

⋅ ΔRN+:= Same, for gear Rt 1.62 in=

y2P bP rTP−:=

xoP .5 tP⋅ bP tan φ( )⋅+ rTP sec φ( ) tan φ( )−( )⋅+:=

XθP xoP y2P+:=

Use MATHCAD to solve for XθP. The equasions below are combined into one very large equasion in
the following line.

Given

r sin
XθP

r

⎛
⎜
⎝

⎞
⎟
⎠

⋅ rTP cos atan
y2P cos

XθP
r

⎛
⎜
⎝

⎞
⎟
⎠

⋅ XθP xoP−( ) sin
XθP

r

⎛
⎜
⎝

⎞
⎟
⎠

⋅−

y2P sin
XθP

r

⎛
⎜
⎝

⎞
⎟
⎠

⋅ XθP xoP−( ) cos
XθP

r

⎛
⎜
⎝

⎞
⎟
⎠

⋅+

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

⋅− y2P sin
XθP

r

⎛
⎜
⎝

⎞
⎟
⎠

⋅ XθP(+
⎡
⎢
⎣

−

⎡
⎢
⎢
⎢
⎢
⎣

ΔrN r 1 cos
XθP

r

⎛
⎜
⎝

⎞
⎟
⎠

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅+ rTP sin atan
y2P cos

XθP
r

⎛
⎜
⎝

⎞
⎟
⎠

⋅ XθP xoP−( ) sin
XθP

r

⎛
⎜
⎝

⎞
⎟
⎠

⋅−

y2P sin
XθP

r

⎛
⎜
⎝

⎞
⎟
⎠

⋅ XθP xoP−( ) cos
XθP

r

⎛
⎜
⎝

⎞
⎟
⎠

⋅+

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

⋅+

XθP Minerr XθP( ):= XθP 0.183 in=

θP
XθP

r
:=

x2P XθP xoP−:=

z1P y2P cos θP( )⋅ x2P sin θP( )⋅−:=

z2P y2P sin θP( )⋅ x2P cos θP( )⋅+:=

ζP atan
z1P
z2P

⎛
⎜
⎝

⎞
⎟
⎠

:=

tNP r sin θP( )⋅ rTP cos ζP( )⋅− z2P−:= tNP 0.141 in=

hNP ΔrN r 1 cos θP( )−( )⋅+ rTP sin ζP( )⋅+ z1P+:= hNP 0.198 in=

XNP
tNP

2

hNP
:= Pinion Tooth Strength Factor XNP 0.1 in=
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YP
2
3

Pd

1
XNP

tan φhP( )
3 tNP⋅

−

⋅:= Pinion Tooth Form Factor YP 0.611=

y2G bG rTG−:=

xoG .5 tG⋅ bG tan φ( )⋅+ rTG sec φ( ) tan φ( )−( )⋅+:=

XθG xoG y2G+:=

Given

R sin
XθG

R

⎛
⎜
⎝

⎞
⎟
⎠

⋅ rTG cos atan
y2G cos

XθG
R

⎛
⎜
⎝

⎞
⎟
⎠

⋅ XθG xoG−( ) sin
XθG

R

⎛
⎜
⎝

⎞
⎟
⎠

⋅−

y2G sin
XθG

R

⎛
⎜
⎝

⎞
⎟
⎠

⋅ XθG xoG−( ) cos
XθG

R

⎛
⎜
⎝

⎞
⎟
⎠

⋅+

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

⋅− y2G sin
XθG

R

⎛
⎜
⎝

⎞
⎟
⎠

⋅ Xθ(+
⎡
⎢
⎣

−

⎡
⎢
⎢
⎢
⎢
⎣

ΔRN R 1 cos
XθG

R

⎛
⎜
⎝

⎞
⎟
⎠

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅+ rTG sin atan
y2G cos

XθG
R

⎛
⎜
⎝

⎞
⎟
⎠

⋅ XθG xoG−( ) sin
XθG

R

⎛
⎜
⎝

⋅−

y2G sin
XθG

R

⎛
⎜
⎝

⎞
⎟
⎠

⋅ XθG xoG−( ) cos
XθG

R

⎛
⎜
⎝

⋅+

⎡
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎣

⋅+

XθG Minerr XθG( ):= XθG 0.199 in=

θG
XθG

R
:=

x2G XθG xoG−:=

z1G y2G cos θG( )⋅ x2G sin θG( )⋅−:=

z2G y2G sin θG( )⋅ x2G cos θG( )⋅+:=

ζG atan
z1G
z2G

⎛
⎜
⎝

⎞
⎟
⎠

:=

tNG R sin θG( )⋅ rTG cos ζG( )⋅− z2G−:= tNG 0.145 in=

hNG ΔRN R 1 cos θG( )−( )⋅+ rTG sin ζG( )⋅+ z1G+:= hNG 0.156 in=

XNG
tNG

2

hNG
:= Gear Tooth Strength Factor XNG 0.134 in=
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YG
2
3

Pd

1
XNG

tan φhG( )
3 tNG⋅

−

:= Gear Tooth Form Factor YG 0.822=

Stress Concentration Factor

H .3254545 .0072727 φ 57.3⋅( )⋅−:=

L .3318182 .0090909 φ 57.3⋅( )⋅−:=

M .2681818 .0090909 φ 57.3⋅( )⋅+:=

KfP H
2 tNP⋅

rfP

⎛
⎜
⎝

⎞
⎟
⎠

L 2tNP
hNP

⎛
⎜
⎝

⎞
⎟
⎠

M

⋅+:= KfP 1.687=

KfG H
2 tNG⋅

rfG

⎛
⎜
⎝

⎞
⎟
⎠

L 2 tNG⋅

hNG

⎛
⎜
⎝

⎞
⎟
⎠

M

⋅+:= KfG 1.906=

Tooth Form Factor

YKP
YP
KfP

:= YKP 0.362=

YKG
YP
KfG

:= YKG 0.32=

mN 1.0:= Tooth Load Sharing Factor, use 1 for statically loaded gears

FK
F ZN⋅ ηJ⋅ cos Ψb( )2⋅

η
2

:= Projected length of the instantaneous
line of contact in the lengthwise
direction of the tooth

FK 0 in=

Effective Pinion Facewidth

ΔFTP
FP FK−

2
xo+:= ΔFTP 0.238 in=

ΔFHP
FP FK−

2
xo−:=

ΔFHP 0.238 in=

FeP hNP atan
ΔFTP
hNP

⎛
⎜
⎝

⎞
⎟
⎠

atan
ΔFHP
hNP

⎛
⎜
⎝

⎞
⎟
⎠

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅ FK+:= FeP 0.347 in=

Effective Gear Facewidth
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ΔFTG
FG FK−

2
xo+:=

ΔFHG
FG FK−

2
xo−:=

FeG hNG atan
ΔFTG
hNG

⎛
⎜
⎝

⎞
⎟
⎠

atan
ΔFHG
hNG

⎛
⎜
⎝

⎞
⎟
⎠

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅ FK+:= FeG 0.309 in=

Bending Stress: Pinion

Ks .4867
.2133
Pd in⋅

+:= Size factor for bending

Kx 1.0:= Lengthwise curvature factor (1.0 for strait bevel)

Determination of the Geometry Factor for Bending

Jp
YKP

mN Ci⋅

rt
r

⋅
FeP
F

⋅
Pd
Pm
⋅:= Jp 0.235=

Bending Stress Result

Stp
2 Tp⋅

F Dp⋅
Pd⋅ Ko⋅ Kv⋅ Ks⋅

Km
Kx Jp⋅
⋅:=

Stp 1.039 105
× psi= Pinion Bending Stress Number

Bending Stress: Gear

Determination of the Geometry Factor for Bending

Jg
YKG

mN Ci⋅

Rt
R

⋅
FeG

F
⋅

Pd
Pm
⋅:= Jg 0.176=

Bending Stress Result

Stg
2 Tg⋅

F Dg⋅

Pd Ko⋅ Kv⋅ Ks⋅ Km⋅

Kx Jg⋅
⋅:=

Stg 1.391 105
× psi= Gear Bending Stress Number

Reaction Forces

Side Gear
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Ft

Tapp

2 Np⋅

Cm sin Γg( )⋅
:= Ft 2.949 103

× lbf=

Fr Ft tan φ( )⋅ cos Γg( )⋅ Np⋅:= Fr 1.257 103
× lbf=

Fa Ft tan φ( )⋅ sin Γg( )⋅ Np⋅:= Fa 1.74 103
× lbf=

Spyder Gear

Fr Ft tan φ( )⋅ sin Γg( )⋅ 2⋅:= Fr 1.74 103
× lbf=

Fa Ft tan φ( )⋅ cos Γg( )⋅ 2⋅:= Fa 1.257 103
× lbf=

Material Properties

Allowable Contact Stress

sac 250 103psi⋅:=

NL 20000 140⋅ Np⋅
Zg
Zp
⋅:= Required Number of loading cycles NL 7.754 106

×=

CL 3.4822 NL
.0602−

⋅:= Fatigue Factor
CL 1.34=

B1 .00898
HRC_TO_HBN Hp( )
HRC_TO_HBN Hg( )

⎛
⎜
⎝

⎞
⎟
⎠

⋅ .00829−:=

CH 1 B1
Zg
Zp

1−
⎛
⎜
⎝

⎞
⎟
⎠

⋅+:= Hardness Ratio Factor CH 1=

KT 1.0:= Temperature Factor (I don't expect the diff to get above 250 F)

Cr 1.12:= Reliability factor (1.12 for 1 failure in 1000)

SF 1.0:= Safety Factor

swc
sac CL⋅ CH⋅

SF KT⋅ Cr⋅
:= Allowable Contact Stress swc 2.992 105

× psi=

Allowable Bending Stress

sat 40 103psi⋅:=
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KR 1.25:= Reliability Factor (1.25 for 1 failure in 1000)

KL 6.1514 NL
.1192−⎛

⎝
⎞
⎠⋅ NL 2 106

⋅<if

1.683 NL
.0323−⎛

⎝
⎞
⎠⋅ otherwise

:=

KL 1.008=

Krev 0.70:= For Fully Reversed Loading

swt sat
KL Krev⋅

SF KT⋅ KR⋅
⋅:= Allowable Bending Stress Number swt 2.258 104

× psi=

Stg 1.391 105
× psi= SFtg

swt
Stg

:= SFtg 0.162=

swt 2.258 104
× psi=

Stp 1.039 105
× psi= SFtp

swt
Stp

:= SFtp 0.217=

Sc 2.458 105
× psi= swc 2.992 105

× psi=
SFc

swc
Sc

:= SFc 1.217=
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